


Lecture Notes in Computer Science 3567
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Mike Jackson David Nelson
Sue Stirk (Eds.)

Database: Enterprise,
Skills and Innovation

22nd British National Conference on Databases, BNCOD 22
Sunderland, UK, July 5-7, 2005
Proceedings

13



Volume Editors

Mike Jackson
University of Central England in Birmingham, Department of Computing
Perry Barr, Birmingham B42 2SU, UK
E-mail: mike.jackson@uce.ac.uk

David Nelson
Sue Stirk
University of Sunderland, The David Goldman Informatics Centre
School of Computing and Technology
Sir Tom Cowie Campus at St Peter’s
St Peter’s Way, Sunderland SR6 0DD, UK
E-mail: {david.nelson,sue.stirk}@sunderland.ac.uk

Library of Congress Control Number: 2005928674

CR Subject Classification (1998): H.2, H.3, H.4

ISSN 0302-9743
ISBN-10 3-540-26973-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26973-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11511854 06/3142 5 4 3 2 1 0



Preface

The British National Conference on Databases (BNCOD) was established in
1980 as a forum for research into the theory and practice of databases. The
original conference in the series took place at the University of Aberdeen. To be
precise, this conference was in fact entitled ICOD which stood for International
Conference on Databases. It was the intention, when the series began, that an
ICOD would take place every two years, whilst a BNCOD would run in the
years in between. As the record shows ICOD was only held in 1980 and 1983.
The more junior conference has managed to acquire a lifetime much longer than
that of its senior relative!

If truth were known, however, BNCOD has, over the years, grown into ICOD
and although the conference is still titled “British National,” it is, in fact, an
international conference that takes place on a yearly basis. Proof of this can be
obtained simply by looking at the table of contents of these proceeding which
clearly show that the majority of papers presented at this year’s conference came
from contributors whose affiliations are outside the UK.

Despite the range of papers on offer, BNCOD still retains its uniquely British
flavor. The Programme Committee is drawn from UK academics and the con-
ference is always held at a British university (or in earlier years a polytechnic!).
BNCOD 2005 attracted a number of UK academics who can only be sure of
meeting each other once a year at the annual BNCOD conference. For many UK
database researchers an earlier BNCOD will have been their first experience of
an academic conference and for many others BNCOD will be the arena in which
they choose to showcase their early work.

Earlier BNCODs were a simple three-day affair. Arrive at lunchtime on the
first day, conference dinner on the second evening and leave after lunch on the
third day. Later BNCODs have grown in stature and are now linked with other
events that take place in the same week as the conference. For some time a Doc-
torial Consortium has been associated with the conference and this has proved to
be a valuable event that has helped to develop UK students attempting to gain
a PhD by researching in the database topic area. Two years ago, when BNCOD
was staged in Coventry, a workshop on Teaching, Learning and Assessment of
Databases was run alongside the conference with the aim of encouraging the
many academics in the UK who teach databases to engage with those academics
who also conduct research in the area. This workshop has proved popular ran
for the third time this year. Additionally, in recent years organizers of BNCOD
have taken the opportunity of the presence of BNCOD delegates to run a work-
shop based on a topic of special interest to researchers in their department. This
year’s conference was partnered with a workshop on Data Mining and Knowledge
Discovery in Databases.

One continuing tradition of BNCOD is that the conference should provide the
UK database community with the opportunity of hearing speakers who have an
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academic track record of outstanding research. This year’s BNCOD has main-
tained that tradition. The invited speakers are Rakesh Agrawal from IBM’s
Almaden Research Center and Paul Watson from the University of Newcastle
upon Tyne.

Rakesh Agrawal’s current research interests include privacy and security
technologies for data systems, Web technologies, data mining and OLAP. He
has pioneered fundamental concepts in data privacy, including the Hippocratic
Database, Sovereign Information Sharing, and Privacy-Preserving Data Mining.
He earlier developed key data mining concepts and technologies. IBM’s commer-
cial data mining product, Intelligent Miner, grew out of this work.

Rakesh has published more than 100 research papers and he has been granted
more than 50 patents. He is the recipient of the ACM-SIGKDD First Innovation
Award, ACM-SIGMOD Edgar F. Codd Innovations Award, as well as the ACM-
SIGMOD Test of Time Award. He is also a Fellow of the IEEE and a Fellow
of the ACM. Scientific American named him in the list of 50 top scientists and
technologists in 2003. Unfortunately, Rakesh’s busy schedule did not leave him
sufficient spare time to prepare a paper for these proceedings and therefore his
presentation has not been included in this volume.

Paul Watson is Professor of Computer Science and Director of the North East
Regional e-Science Centre. In the 1980s, as a Lecturer at Manchester University,
he was a designer of the Alvey Flagship and Esprit EDS systems. During 1990–
1995 he worked for ICL as a system designer of the Goldrush MegaServer parallel
database server, which was released as a product in 1994. In recent years his work
has focused on “The Grid,” specifically methods of accessing and integrating
large amounts of data held in distributed databases.

Paul’s paper, which is included in the proceedings, will be of interest to many
database researchers looking for areas in which their work can be applied. The
UK funding bodies seem to have long regarded the database arena as one that
requires little further research work. This paper shows how database technol-
ogy can be important in an area that has attracted considerable interest: Grid
applications.

The full papers that were submitted to, and accepted by, the conference were
grouped to form three sessions: Spatio-temporal Databases, Data Integration and
Information Retrieval, and Data Processing and Provenance.

Elzbieta Malinowski and Esteban Zimányi’s paper demonstrates that spatial
techniques, previously associated with geographical information systems, can be
usefully applied to data warehousing and OLAP. Taher Ahmed and Maryvonne
Miquel complement this work by describing OLAP techniques for data that
might arise from geographical analysis over time. Heidi Gregersen, in contrast,
considers the conceptual aspects of database applications by seeking to extend
the familiar Entity Relationship Model in order to be able to model temporal
aspects of data.

Mohamed Basel Al-Mourad and Nick Fiddian present a rule based approach
to combining data from heterogeneous databases, their work concentrates on ob-
ject databases. Wenxin Liang and Haruo Yokota seek to solve a similar problem;
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however their area of interest is XML documents. Carson Leung and Wookey Lee
consider a different type of data integration that is found in data warehousing.
Their paper demonstrates a method for improving the update of data warehouse
views which relies on the constraints that apply to the source data. Jun Hong,
Weiru Liu, David Bell and Qingyuan Bai demonstrate how the performance of
queries that involve views can be improved when the constraints represented by
the functional dependencies associated with those views are taken into consid-
eration.

The final grouping of papers contains research that describes techniques for
selecting data and for tracing where data selections have been derived. Keke
Cai describes a method for choosing the data to be broadcast in a broadcast
network. Rainer Gemulla, Henrike Berthold and Wolfgang Lehner demonstrate
how to select samples of data in order to speedily obtain information from a data
warehouse. Hao Fan and Alexandra Poulovassilis present a technique that traces
the way in which integrated information has been derived from data sources.

Over recent years BNCOD has also included short papers. These papers are
presented at the conference by their authors but they are allocated a shorter
timeslot than that set aside for full papers. Typically, short papers describe
interesting work in progress that has not yet generated the full volume of results
expected in a full paper. The short papers in this year’s BNCOD were separated
into two groups: those that are concerned with data expressed in XML and those
that describe application areas of information management.

Peter Pleshachkov, Petr Chardin and Sergey Kuznetsov set out a scheme that
makes it possible for users to concurrently access an XML database. They pro-
pose a locking technique that is based on the Xpath language.
Pensri Amornsinlaphachai, Akhtar Ali and Nick Rossiter are similarly concerned
with XML databases and describe a methodology to update linked XML docu-
ments.

Dong Liang, Jie Yang, Jinjun Lu and Yuchou Chang discuss a technique
that improves the accuracy of image retrieval. Patricio Mois, Marcos Sepúlveda
and Humberto Pröschle demonstrate an algorithm which uses text processing
to improve the accuracy of data entry in geographical information systems. Ben
Sissons, Alex Gray, Anthony Bater and Dave Morrey describe an implementation
of a patient information system designed to operate within an environment in
which correctness and security are critical issues. Werner Nutt and Alisdair Gray
propose a technique for integrating streams of data into a global schema that
uses a publish/subscribe architecture.

The contributions summarized above are representative of the fact that
BNCOD is fortunate in being able to attract a good number of high quality
submissions. The papers accepted were selected from the 66 submitted. Many
of the submissions that for reasons of time and space could not be included in
the conference contained descriptions of high-class database research. The con-
ference organizers thank everyone who submitted a paper and hope that they
will continue to support BNCOD in the years to come.
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Spatial Hierarchies
and Topological Relationships

in the Spatial MultiDimER Model�

Elzbieta Malinowski�� and Esteban Zimányi

Department of Informatics & Networks
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Abstract. In Data Warehouses and On-Line Analytical Processing sys-
tems hierarchies are used to analyze high volumes of historical data.
On the other hand, the advantage of using spatial data in the analysis
process is widely recognized. Therefore, in order to satisfy the growing re-
quirements of decision-making users it is necessary to extend hierarchies
for representing spatial data. Based on an analysis of real-world spatial
applications, this paper defines different kinds of spatial hierarchies and
gives a conceptual representation of them. Further, we study the sum-
marizability problem and classify the topological relationships between
hierarchy levels according to the procedures required for ensuring correct
measure aggregation.

1 Introduction

Data Warehouses (DWs) and On-Line Analytical Processing (OLAP) systems
are used to store and analyze high volumes of historical data. These systems
rely on a multidimensional view of data, which is usually represented as a
star/snowflake structure consisting of fact tables, dimension tables, and hier-
archies. A fact table represents the focus of analysis and contains attributes
called measures, e.g., quantity sold. A dimension table includes attributes allow-
ing the user to explore the measures from different analysis perspectives. These
attributes may either form a hierarchy, e.g., City – State – Region or be descrip-
tive, e.g., Store number. Hierarchies allow both a detailed view and a general
view of data using the roll-up and drill-down operations. The former transforms
detailed measures into aggregated data (e.g., daily into monthly or yearly sales)
while the latter does the contrary.

Although the location dimension has been widely integrated in DWs and
OLAP systems, it is usually represented in an alphanumeric, non-spatial man-
ner. Taking into account the growing demand of including spatial data in the
decision-making process, in this work we extend traditional hierarchies for in-
cluding spatial data. We realize such extension using a conceptual model ap-
proach. Furthermore, we consider the issue of measure aggregation and analyze
� The work of E. Malinowski was funded by a scholarship of the Cooperation Depart-

ment of the Université Libre de Bruxelles
�� Currently on leave from the Universidad de Costa Rica
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18 Elzbieta Malinowski and Esteban Zimányi

the topological relationships existing between hierarchy levels in order to estab-
lish whether the summarizability problem arises.

Presenting the different kinds of spatial hierarchies using a conceptual ap-
proach will help decision-making users to better express their requirements with-
out being bothered with implementation considerations. Additionally, the clas-
sification of topological relationships between hierarchy levels according to the
required procedure for measure aggregation helps implementers of spatial OLAP
tools to develop correct and efficient solutions for spatial data manipulations re-
lying on common specifications.

This paper is organized as follows. Section 2 defines spatial hierarchies and
the associated notation. Section 3 presents different kinds of spatial hierarchies
including their graphical representation. Section 4 analyzes the summarizability
problem in the light of the different topological relationships existing between
spatial hierarchy levels. Section 5 surveys works related to representing spatial
hierarchies and Section 6 gives conclusions and future perspectives.

2 The Spatial MultiDimER Model

The Spatial MultiDimER model [7, 8] is a spatial conceptual model for mul-
tidimensional data. A schema is defined as a finite set of dimensions and fact
relationships. A dimension includes either a level, or one or more hierarchies.
Levels are represented as entity types (Figure 1 a). An instance of a level is
called a member .

A hierarchy has several related levels (Figure 1 b). Given two consecutive
levels of a hierarchy, the higher level is called parent and the lower level is
called child . Cardinalities (Figure 1 c) indicate the minimum and the maximum
number of members in one level that can be related to a member in another

Fig. 1. Notations of our conceptual multidimensional model: (a) dimension with one
level, (b) hierarchy with several levels, (c) cardinalities, (d) analysis criterion, (e) pic-
tograms for spatial data types, and (f) pictograms for topological relationships
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level. A level of a hierarchy that does not have a child level is called leaf and
the one that does not have a parent level is called root and represents the most
general view of data. Hierarchies express different structures according to the
analysis criteria, e.g., geographical location (Figure 1 d).

Levels have one or several key attributes (represented in bold and italic in
Figure 1) and may also have other descriptive attributes . Key attributes of a
parent level show how child members are grouped. Key attributes in a leaf level
indicate the granularity of measures in the associated fact relationship.

We define a spatial level as a level for which the application needs to keep its
spatial characteristics. This is captured by its geometry, which is represented us-
ing spatial data types such as point, line, area, or a collection of these data types.
We use the pictograms of MADS [10] for representing the geometry of spatial
levels and the topological relationships between these levels. We adopt an orthog-
onal approach where a level may have geometry independently of the fact that
it has spatial attributes. This achieves maximal expressive power where, e.g., a
level such as State may be spatial or not depending on application requirements,
and may have (descriptive) spatial attributes such as Capital.

A hierarchy (resp. dimension) is spatial if it has at least one spatial level
(resp. hierarchy). Usual non-spatial dimensions, hierarchies, and levels are called
thematic. Our definition of spatial dimension extends that in [13] where spatial
dimensions are based on spatial references of hierarchy members. Spatial hier-
archies can combine thematic and spatial levels. Figure 2 a) shows a hierarchy
where all levels are spatial. As shown in the figure, each level is associated with
a spatial data type determining its geometry: Point for Store, Simple Area for
County, and Area Set for State. We call a hierarchy fully spatial when all its
levels are spatial, it is called partly spatial when it contains both spatial and
thematic levels. Notice that in our model it is easy to distinguish between the-
matic, partly-spatial, and spatial hierarchies depending on whether a spatial
pictogram is present in the hierarchy levels.

As shown in Figure 2 a), our model also allows to represent the topological
relationship between a spatial child and a spatial parent levels. The pictogram in
the figure corresponds to the within/contains topological relationship meaning,
e.g., that the spatial extent of a county is contained into the spatial extent
of its related state. If no topological relationship is specified by the user, it is
assumed by default that the link between spatial hierarchy levels represents a
within/contains topological relationship.

3 Different Kinds of Spatial Hierarchies

In this section we briefly present the classification of hierarchies given in [7] using
examples from the spatial domain. This allows to show that this categorization
can be applied for non-spatial as well as for spatial hierarchies.

3.1 Simple Spatial Hierarchies

Simple spatial hierarchies are those hierarchies where the relationship between
their members can be represented as a tree. Further, these hierarchies use only
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one criterion for analysis. Simple spatial hierarchies can be further categorized
into symmetric, asymmetric, and generalized spatial hierarchies.

Symmetric spatial hierarchies have at the schema level only one path where
all levels are mandatory. An example is given in Figure 2. At the instance level
the members form a tree where all the branches have the same length. As implied
by the cardinalities, all parent members must have at least one child member
and a child member cannot belong to more than one parent member.

Fig. 2. A symmetric hierarchy: (a) schema and (b) examples of instances

Asymmetric spatial hierarchies have only one path at the schema level (Fig-
ure 3) but, as implied by the cardinalities, some lower levels of the hierarchy
are not mandatory. Thus, at the instance level the members represent a non-
balanced tree, i.e., the branches of the tree have different lengths. The example

Fig. 3. An asymmetric spatial hierarchy: (a) schema and (b) examples of instances
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of Figure 3 represents an asymmetric spatial hierarchy for a forest division con-
sisting of little cell, cell, segment, and region. Since some parts of the forest are
located in the mountain and are difficult to access, detailed representations of
all areas are not available for analysis purposes and some hierarchy members are
leaves at the segment or at the cell levels.

Generalized hierarchies contain multiple exclusive paths sharing some levels
(Figure 4). All these paths represent one hierarchy and account for the same
analysis criterion. At the instance level each member of the hierarchy belongs
to only one path. The symbol ⊗ indicates that for every member the paths
are exclusive. In the example, it is supposed that road segments can belong to
either city roads or to highways, where the management of city roads is the
responsibility of districts while that of highways is privatized. Notice that the
geometry associated to the Company level (a simple area) represents the spatial
extent that a company is responsible for maintenance.

Fig. 4. A generalized spatial hierarchy: a) schema and b) examples of instances

As another example, the data model of the U.S. Census-Administrative
Boundaries [15] includes several generalized hierarchies. One of them represents
a spatial hierarchy containing a county level. However, in Maryland, Missouri,
Nevada, and Virginia the county level is replaced by independent cities or places,
whereas in American Samoa, county is replaced by district and islands.

Generalized spatial hierarchies include a special case commonly referred to
as non-covering hierarchies . In these hierarchies, some paths skip one or several
levels having in common at least the leaf and root levels.
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3.2 Non-strict Spatial Hierarchies

Until now we have assumed that the parent-child links have one-to-many car-
dinalities, i.e., a child member is related to at most one parent member and
a parent member may be related to several child members. However, many-to-
many cardinalities are very common in real-life applications: e.g., a mobile phone
network cell may belong to several ZIP areas [4], several tribal subdivisions in
the U.S. Census hierarchy belong both to the American Indian reservation and
to the Alaska Native areas [15].

We call a spatial hierarchy non-strict if it has at least one many-to-many
cardinality; it is called strict if all cardinalities are one-to-many. The members
of a non-strict hierarchy form a graph. The fact that a hierarchy is strict or not is
orthogonal to its type. Thus, the different kinds of hierarchies already presented
can be either strict or non-strict.

Fig. 5. A symmetric non-strict hierarchy: (a) model and (b) example of instances

Figure 5 shows a symmetric non-strict spatial hierarchy. The many-to-many
cardinality represents the fact that a lake may belong to more than one city.
This hierarchy may be used, e.g., for controlling the lake contamination level
caused by neighbour cities.

Most non-strict hierarchies arise when a partial containment relationship
takes place [4], e.g., when only part of a highway belongs to a state. In real
situations it is difficult to find non-strict hierarchies with a full containment
relationship, i.e., when a spatial member of a lower level wholly belongs to more
than one spatial member of a higher level.

3.3 Multiple Alternative Spatial Hierarchies

Multiple alternative spatial hierarchies have several non-exclusive simple spatial
hierarchies sharing some levels. However, all these hierarchies account for the
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same analysis criterion. At the instance level such hierarchies form a graph since a
child member can be associated with more than one parent member belonging to
different levels. In multiple alternative spatial hierarchies, it is not semantically
correct to simultaneously traverse the different composing hierarchies: The user
must choose one of the alternative hierarchies for analysis.

Fig. 6. Multiple alternative hierarchies formed by two non-strict symmetric hierarchies

The example given in Figure 6 represents part of the hierarchies used in the
U.S. Census Bureau [15]. The hierarchy for American Indian and Alaska Native
Areas, and Hawaii Home Land (AIANA/HHL) uses a particular subdivision of
the territory (lower path of the figure). However, the usual hierarchy composed,
among others, of County and State levels1 (upper path of the figure) provides
another subdivision of the same territory. This path can be used for obtaining
statistics of American Indian by counties and states. It is obvious that both
hierarchies cannot be simultaneously used during analysis.

Notice the difference between generalized and multiple hierarchies (Figures
4 and 6). Although both hierarchies share some levels and use only one analysis
criterion, they represent different situations. In a generalized hierarchy a child
member is related to one of the paths, whereas in multiple hierarchies a child
member is related to all paths, and the user must choose one of them for analysis.

3.4 Parallel Spatial Hierarchies

Parallel spatial hierarchies arise when a dimension has associated several spa-
tial hierarchies accounting for different analysis criteria. Such hierarchies can be
independent or dependent. In a parallel independent spatial hierarchy, the dif-
ferent hierarchies do not share levels, i.e., they represent non-overlapping sets of
hierarchies. An example is given in Figure 7.

In contrast, parallel dependent spatial hierarchies, have different hierarchies
sharing some levels. The example in Figure 8 represents an insurance company
that includes hospitalization services for clients. The Client dimension contains
two hierarchies: a symmetric hierarchy representing the hospitalization structure
and a non-covering one representing the geographic division of the client’s ad-
dress. Both hierarchies share the common levels of City and State. Notice that
the difference between multiple alternative and parallel dependent hierarchies
(Figures 6 and 8) consists in allowing one or several analysis criteria.
1 To simplify the example, we ignore that some states are not divided in counties
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Fig. 7. Parallel independent spatial hierarchies associated to one dimension

Fig. 8. Parallel dependent spatial hierarchies

4 Topological Relationships Between Spatial Levels

As already said, the levels related by a child-parent relationship may be spatial
or non-spatial. This leads to 4 possible combinations: non-spatial-to-non-spatial
(the child and parent levels are thematic), spatial-to-non-spatial (a spatial level
rolls-up to a non-spatial level), non-spatial-to-spatial (a non-spatial level rolls-up
to a spatial level), and spatial-to-spatial (both levels are spatial). To each one
of these combinations corresponds a different relationship type: (1) a contain-
ment function for non-spatial-to-non-spatial relationships, (2) a mapping from
a spatial to a non-spatial domain for spatial-to-non-spatial relationships, (3) a
mapping from a non-spatial to a spatial domain for non-spatial-to-spatial rela-
tionships, and (4) a topological relationship for spatial-to-spatial relationships.

The first kind of relationship has been widely investigated. Mappings from
spatial to non-spatial domains (or vice versa) can be easily implemented. The
question that remains is which kinds of topological relationships should be al-
lowed between spatial levels considering that these hierarchies are used for ag-
gregating measure values when traversing levels.

For non-spatial hierarchies, summarizability conditions [6] must hold for en-
suring the correct aggregation of measures in higher levels taking into account
existing aggregations in lower levels. These conditions include, among others, a
simple-value mapping between hierarchy levels and completeness (i.e., no miss-
ing values and existence of a parent member for every child member). Since
asymmetric, generalized, and non-strict hierarchies do not satisfy summariz-
ability conditions, it is required to apply either special aggregation procedures
(e.g., implemented in Microsoft Analysis Services [9] for asymmetric and non-
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covering hierarchies), or transformations (e.g., described in [4] for asymmetric,
non-covering, and non-strict hierarchies).

Although the summarizability conditions have been established for non-spatial
hierarchies they must also hold for spatial hierarchies. However, summarizabil-
ity problems may also arise depending on the topological relationship existing
between spatial levels. Several solutions may be applied: an extreme one is to dis-
allow the topological relationships that cause problems whereas another solution
is to define customized procedures for ensuring correct measure aggregation.

We give next a classification of topological relationships2 according to the re-
quired procedures for establishing measure aggregation. Our classification, shown
in Figure 9, is based on the intersection between the geometric union of the spa-
tial extents of child members (denoted by GU(Cext)) and the spatial extent of
their associated parent member (denoted by Pext). To simplify the discussion, we
only consider spatial hierarchies with distributive numeric measures, e.g., sum3.

The disjoint topological relationship is not allowed between spatial hierarchy
levels since during a roll-up operation the next hierarchy level cannot be reached.
Thus, a non-empty intersection between GU(Cext) and Pext is required.

Fig. 9. Classification of topological relationship for aggregation procedures

Different topological relationship may exist if the intersection of Pext and
GU(Cext) is not empty. If GU(Cext) within Pext, then the geometric union of
the child member extents (as well as the extent of each child member) is included
in their parent member extent. In this case, the aggregation of measures from a
child to a parent level can be done safely using a traditional approach. Similar
situation occurs if GU(Cext) equals Pext with the additional constraint that both
spatial extents are equal and have common boundaries.

The situation is different if the extents of child and parent members are re-
lated by a topological relationship distinct from within or equal. As can be seen in
Figure 9 different topological relationships belong to this category, e.g., touches,

2 We consider the topological relations from the SQL/MM standard [3]
3 We do not consider spatial measures obtained by applying spatial operators or func-

tions to spatial objects [8] as proposed by [11]
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crosses. As in [12], we distinguish three possibilities depending on whether a
topological relationship exists between the boundaries, the interiors, or both the
boundaries and the interiors of the spatial extents of child and parent members.
For example, this distinction is important in Figure 8 for determining how to
realize aggregations if a lake touches a city and overlaps another.

When developing aggregation procedures, if GU(Cext) intersects Pext and
this intersection is different from equal or within, the spatial extent of some (or
all) child members is not completely included in the spatial extent of a par-
ent member. The topological relationship existing between the spatial extents
of individual child members and a parent member determines which measure
values can be considered in its entirety for aggregation and which must be par-
titioned. For example, if in the hierarchy in Figure 2 the geographic union of
the points representing stores is not within the spatial extent of their county,
every individual store must be analyzed for determining how the measure (for
example, required taxes) should be distributed between two or more counties.
Therefore, an appropriate procedure for measure aggregation according to ap-
plication particularities must be developed, such as that proposed by [4] for
partial containment topological relationship. As already said, another solution
is to disallow these topological relationships in spatial hierarchies.

5 Related Work

Many works focus on conceptual modelling for Spatial Databases (e.g., [10]) or
for DWs (e.g., [14]) based on either the ER model or the UML. However, a
multidimensional model is seldom used for spatial data modelling. Moreover,
even though organizations such as ESRI recognize the necessity of conceptual
modelling by introducing templates of spatial data models in different areas of
human activities [1], these models often refer to particular aspects of the logical-
level design and are too complex to be understood by decision-making users.

Ferri et al. [2] refer to common key elements between spatial and multidi-
mensional databases: time and space. They formally define a geographic data
model including contains and full-contains relationships between hierarchy lev-
els. Based on these relationships, the integration between GIS and DW/OLAP
environments can be achieved by a mapping between the hierarchical struc-
tures of both environments. The concept of mapping between hierarchies is also
exploited by Kouba et al. [5]. To ensure the consistent navigation in a hierar-
chy between OLAP systems and GISs, they propose a dynamic correspondence
through classes, instances, and action levels.

Stefanovic et al. [13] distinguish three types of spatial dimensions based on
the spatial references of the hierarchy members: non-spatial (a traditional non-
spatial hierarchy), spatial-to-non-spatial (a spatial level rolls-up to a non-spatial
level), and fully spatial (all hierarchy levels are spatial).

Jensen et al. [4] present a general scenario for location-based services (LBSs)
including a data warehouse as central storage platform. Their model includes
several dimensions, one of which is a spatial dimension. They proposed a model
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with hierarchies including a new partial containment relationship where only
part of the spatial extent of a member belongs to a higher hierarchy level.

Although the works mentioned above refer to spatial hierarchies in DW
and/or OLAP, only [4] classify spatial hierarchies. However, they neither in-
clude generalized hierarchies nor distinguish partly and fully spatial hierarchies.
Further, since they do not focus on the graphical representation of the different
kinds of hierarchies, some of them are difficult to distinguish, e.g., non-covering
and multiple hierarchies.

The work of Pedersen and Tryfona [11] refers to pre-aggregation in spatial
DWs. However, we consider that the analysis they present and the solution they
proposed are adequate for managing spatial measure represented by geometry
[8] and it goes out of the scope of this article.

6 Conclusions

DW and OLAP systems use a multidimensional model for representing user
requirements for decision making. In this model hierarchies allow to view data
at different levels of detail using roll-up and drill-down operations. On the other
hand, Geographic Information Systems (GISs) have been successfully used for
many years in a great number of applications areas. Since it is estimated that
80% of the data stored in databases has a spatial component, the merging of both
technologies, DWs and GISs, provides an opportunity to enhance the decision-
making process. However, the lack of a conceptual approach for multidimensional
modelling, joined with the absence of a commonly-accepted conceptual model
for spatial applications, makes that representing real-world hierarchies including
spatial levels is a challenging task.

We extended the different kinds of hierarchies proposed in [7] by the in-
clusion of spatial levels. Hierarchies may be fully or partly spatial depending
on whether all their levels are spatial. Combining spatial and non-spatial levels
leads to different relationships between hierarchy levels. Finally, we addressed
the summarizability problem that arises for some types of hierarchies. We em-
phasized that the summarizability problem may also occur due to the different
topological relationships existing between hierarchy levels. We classify these re-
lationships according to the complexity required for developing procedures for
measure aggregation.

The present work belongs to a larger project aiming at developing a concep-
tual model for spatio-temporal data warehouses. We are currently working on
the inclusion of temporal features in our model.
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TimeERplus:
A Temporal EER Model Supporting Schema Changes

Heidi Gregersen

Department of Marketing, Informatics and Statistics,
Aarhus School of Business, Fuglesangs Allé 4, DK-8210 Aarhus V

Abstract. A wide range of database applications manage information that varies
over time. Many of the underlying database schemas of these were designed us-
ing one of the several versions, with varying syntax and semantics, of the Entity-
Relationship (ER) model. In the research community as well as in industry, it is
common knowledge that the temporal aspects of the mini-world are important,
but are also difficult to capture using the ER model. Not surprisingly, enhance-
ments to the ER model have been proposed in an attempt to more naturally sup-
port the modeling of temporal aspects of information. Common to the existing
temporally extended ER models, few or no specific requirements to the models
were given by their designers.
With the existing proposals, an ontological foundation, and novel requirements
as its basis, this paper defines a novel temporally extended ER model satisfying
an array of properties not satisfied by any single previously proposed model.

1 Introduction

A wide range of existing database applications manage time-varying information. Fre-
quently, existing temporal-database applications employ the Entity-Relationship (ER)
model [2], in one of its different incarnations, for database design. The model is easy to
understand and use, and an ER diagram provides a good overview of a database design.
The focus of the model is on the structural aspects of the mini-world, as opposed to the
behavioral aspects.

It has been recognized that although temporal aspects of mini-worlds are important
for most applications, they are also difficult to capture using the ER model. The tempo-
ral aspects have to be modeled explicitly in the ER diagrams, resulting in ER diagrams
with entities and attributes that model the temporal aspects, which make the diagrams
difficult to understand. As a result, some industrial users simply ignore all temporal
aspects in their ER diagrams and supplement the diagrams with textual phrases such as
“full temporal support,” indicating that the temporal aspects of data should somehow be
captured. The result is that the mapping of ER diagrams to the relational tables of the
underlying DBMS must be performed by hand; and the ER diagrams do not document
well the temporally extended relational database schemas used by the application pro-
grammers. An example, Fig. 1 illustrates how temporal aspects may clutter an otherwise
simple ER diagram.

Example 1. Figure 1 presents an ER diagram for a company divided into different de-
partments. Each department has a number, a name, some locations, and is responsible
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for a number of projects. The company keeps track of when a department is inserted
and deleted. It also keep track of the various locations of a department. A department
keeps track of the profits it makes on its projects. Because the company would like to
be able to make statistics on its profits, each department must record the history of its
profits over periods of time.
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Fig. 1. ER Diagram Modeling Temporal Aspects

Each project has a manager who manages the project and some employees who
work for the project. Each project has an ID and a budget. The company registers the
history of the budget of a project. Each project is associated with a department that is
responsible for the project. Each employee belongs to a single department throughout
his or her employment. For each employee, the company registers the ID, the name, the
date of birth, and the salary. The company also records the history of employments. The
departments would like to keep records of the different employees’ salary histories. For
reasons of accountability, it is important to be able to trace previous records of both
profits and salaries.

Employees work on one project at a time, but employees may be reassigned to other
projects, e.g., due to the fact that a project may require employees with special skills.
Therefore, it is important to keep track of who works for which project at any given
point in time and when they are suppose to be finished working on their current project.
Some of the employees are project managers. Once a manager is assigned to a project,
the manager will manage the project until it is completed or otherwise terminated.

The research community’s response to the shortcomings of the ER model for the
modeling of temporal aspects, such as valid and transaction time, has been to develop
temporally enhanced ER models, and a number of models have been reported in the
research literature [1, 12, 18, 20].
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The approaches taken to add built-in temporal support into the ER model are quite
different. One approach is to devise new notational shorthands that replace some of the
patterns that occur frequently in ER diagrams when temporal aspects are being mod-
eled. Another approach is to change the semantics of the existing ER model constructs,
making them temporal.

While the existing temporal ER models represent a rich body of insight into the
modeling of temporal data, an evaluation [13] of the models according to a dozen eval-
uation criteria indicate that no model is entirely satisfactory. For example, only two
models supports the transaction-time aspect of data [18, 19]. A common characteristic
of the existing temporal ER models is that few or no specific requirements to the models
were given by their designers. Rather than being systematically founded on an analysis
of general concepts and temporal aspects, their designs are often ad hoc. For example,
the design of one model is the result of the need for the modeling of temporal aspects
in a specific application [10]. These conditions make it difficult to identify the ideas be-
hind the designs of the models and to understand their semantics. Section 4 compares
the proposed model to the existing models in more detail.

It is our contention that there is a need for a temporally extended ER model with
an ontological foundation that analyzes and explicitly describes concepts fundamental
to temporally enhanced data modeling. It is also essential that this model has explicitly
formulated design goals and a comprehensive and precise definition.

We define a graphical, temporally extended ER model, called TIMEERplus, that ex-
tends the EER model as defined by Elmasri and Navathe [8] to provide built-in support
for capturing temporal aspects of entities, relationships, superclasses and subclasses,
and attributes. The design of the model is based on an ontology, which defines database
objects, fundamental aspects of time, and indicates which aspects of time may be as-
sociated meaningfully with which database objects. Finally, the model is designed to
satisfy additional, explicitly formulated design goals for temporally extended ER mod-
els.

The paper is structured as follows. Section 2 first gives the ontological foundation
of the TIMEERplus model, then formulates the design goals for the model. Section 3
proceeds to define the TIMEERplus model. Section 4 compares TIMEERplus with
the previously proposed temporal ER models, pointing out the obtained improvements.
Finally, Sect. 5 provides a short summary.

2 Ontological Foundations and Requirements

This section first relates the aspects of reality that may be captured by an ER model
to the fundamental modeling constructs in ER modeling. Then follows an introduction
of generic temporal aspects of information that are candidates for being given built-
in support in an ER model. We proceed to introduce two fundamental distinctions;
different decisions for these distinctions lead to fundamentally different ER models.
Finally, we present a set of requirements to a temporal ER model. We first relate the
modeling constructs and temporal aspects, thus identifying exactly which combinations
are meaningful. Next, we present design guidelines derived from a set of criteria for
evaluating temporally extended ER models that we have previously developed [13].
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Database Objects. Anything that exists in the mini-world and can be separated from
other things in the mini-world is an entity; hence, a data model used for capturing a
database representation of an entity should provide means of conveniently modeling the
existence and unique identification of entities. The time during which an entity exists in
the mini-world, that is, the time during which it is of interest to the mini-world we call
the existence time of the entity. Other models has another view of existence time [7, 9].

Beyond having an independent existence, an entity is characterized by its properties,
modeled by attributes. At any given point in time, an entity has a value for each of its
attributes. The values of some attributes remain unchanged over time while others vary
over time. We assume that it is meaningful for entities to have properties exactly when
they exist.

A relationship type among some entity types defines a set of relations among entities
of these types. Each relationship relates exactly one entity from each of the entity types
that the relationship type is defined over.

Another type of relationships exists, namely the superclass/subclass relationships
that classifies entities of a superclass into different subclasses, e.g., employees may be
divided into secretaries, engineers, and technicians. It is the same entities that occur in
the subclasses and in the superclass; superclass/subclass relationships represent inher-
itance hierarchies rather than relate entities. The entities of the subclasses inherit all
the properties of entities of the superclass. It is not possible in subclasses to delete or
modify the inherited properties, but it is possible to add new properties.

Aspects of Time. In the database community, several types of temporal aspects of in-
formation have been discussed over the years. In this paper, we focus on four distinct
types of temporal aspects that are candidates for being given built-in support in an ER
model, namely valid time, lifespan, transaction time, and user-defined time [14].

We use the term “fact” to denote any statement that can be assigned a truth value,
i.e., true or false. The notion of valid time applies to facts: the valid time of a fact is
the time when that fact is true in the mini-world. Thus, any fact in the database may
be associated with a valid time. However, the valid time may or may not be captured
explicitly in the database.

In ER models, unlike in the relational model, a database is not structured as a col-
lection of facts, but rather as a set of entities and relationships with attributes, with the
database facts being implicit. Thus, the valid times are associated only indirectly with
facts. As an example consider an Employee entity e1 with a Department attribute. A
valid time of June 2003 associated with the value “Shipping” does not say that “Ship-
ping” is valid during June 2003, but rather that the fact “e1 is in Shipping” is valid dur-
ing June 2003. Thus, when valid time is captured for an attribute such as Department,
the database will record the varying Department values for the Employee entities. If it
is not captured, the database will (at any time) record only one department value for
each Employee entity.

The lifespan of an entity captures the existence time of the entity [14]. If the concept
of lifespan of entities is supported, this means that the model has built-in support for
capturing the times when entities exist in the mini-world. The lifespan of an entity e may
be seen as the valid time of the related fact, “e exists.” However, we choose to consider
lifespans as separate aspects since the recording of lifespans of entities is important for
many applications.
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The transaction time of a database fact is the time when the fact is current in the
database and may be retrieved. As is the case for lifespans, the transaction time of a
fact f may be seen as the valid time of a related fact, namely the fact, “f is current
in the database,” but we have also chosen to record transaction time as a separate as-
pect. Unlike valid time, transaction time may be associated with any element stored
in a database, not only with facts. Thus, all database elements have a transaction-time
aspect.

User-defined time is supported when time-valued attributes are available in the data
model [24]. These are then employed for giving temporal semantics – not captured in
the data model, but only externally, in the application code and by the database designer
– to the ER diagrams. For employee entities, such attributes could record birth dates,
hiring dates, etc.

2.1 Fundamental Design Decisions

Two questions must be answered initially – the answers to these fundamentally affect
the nature and properties of a temporally extended ER model.

Temporal Support, How? The first question is whether temporal support should be
achieved by giving new temporal semantics to the existing constructs, or by introducing
completely new temporal constructs.

The approach where all existing ER model constructs are given temporal semantics
has been used in several of the existing temporal models [7, 9, 19] and has its strong
points. Database designers are likely to be familiar with the existing ER constructs. So,
after understanding the principle of making these constructs temporal, the designers are
ready to work with, and benefit from using, the temporal ER model. However, this ap-
proach is not without problems. In its extreme, this approach rules out the possibility
of designing non-temporal databases, i.e., databases that do not capture the temporal
aspects of data. It is also not possible to design databases with non-temporal parts. An-
other problem is that old diagrams are no longer correct, i.e., while their syntax is legal,
their semantics have changed, and they therefore no longer describe the underlying re-
lational database schemas.

It is possible to retain the existing ER constructs with their usual semantics while
achieving temporal support. This is accomplished by adding new temporal constructs
to the model that provide the support, and this approach is widely used [10, 17, 18, 21,
22, 27, 28, 30]. The extent of the changes made to the ER model may range from minor
changes to a total redefinition of the model.

Two types of new temporal constructs may be distinguished. With implicit temporal
support, the timestamp attributes used for capturing a temporal aspect are “hidden” in
the new modeling constructs – explicit timestamps for capturing the temporal aspects
are absent. In contrast, with explicit temporal support, timestamp attributes are explicit,
and the semantics of the existing ER constructs are retained. Any new modeling con-
structs are notational shorthands for elements of regular ER diagrams, introduced to
make the modeling of temporal aspects more convenient[10].

The models that retain the existing constructs with their old semantics and introduce
new temporal constructs also have problems. If their extensions are comprehensive,
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they are likely to be more difficult for the database designers to learn and understand.
On the other hand, this approach avoid the problem of legacy diagrams not describing
the underlying database, since the semantics of the existing ER constructs are retained.

Design Model or Implementation Model? The second question is whether the temporal
ER model should have a query language, or whether algorithms that map ER diagrams
to implementation platforms should be provided.

An algorithm may map temporal ER diagrams directly to relational database schemas
[10, 17, 19, 21, 22, 28], or a two-phase approach may be adopted where temporal ER
diagrams are first mapped to conventional ER diagrams and then mapped to relational
database schemas, reusing mappings from the conventional ER model to the relational
model [10, 27, 30]. For minor extensions of the ER model, the reuse in the two-phase
approach may be attractive. However, the two-phase translation yields less control over
what relational schemas result from the combined mapping.

As an alternative to mapping ER diagrams to the schema of a separate implemen-
tation platform, another approach is to assume a system that implements the ER model
directly [7, 9, 19–21, 28]. With this approach, a mapping to an implementation plat-
form is not required. Instead, a query language should be available for querying ER
databases.

2.2 Requirements for Capturing Temporal Aspects

Valid and transaction time are general – rather than application specific – aspects of
all database facts [24]. Lifespan and transaction time are general aspect of entities. As
such, these aspects are prime candidates for being built into a temporal ER model.

We distinguish between two uses of a conceptual model, namely the use of a model
for analysis and the use for design. When a model is used for analysis, it is used for
modeling a small part of reality and should therefore provide constructs for modeling
valid time and lifespans. When used for design, the aim is to model the underlying
implementation, which is usually the relational database model and should therefore
provide constructs that enables the users to capture transactions time in addition to
valid time and lifespan. Since we cannot anticipate if the users will use the model for
analysis and/or design the model must provide constructs such that valid time, lifespans,
and transaction time can be captured.

Lifespan. Lifespans are used for capturing existence time in the database, so a temporal
ER model should offer built-in support for the registration of lifespans of entity types.
Lifespans may or may not, at the designer’s discretion, be captured in the database.

Built-in support for capturing lifespans of entities is important because lifespans
are important in many applications and because entities may exist beyond the times
when their attributes have (non-null) values – it is thus not possible to infer lifespans of
entities from the valid times of the attribute values associated with the entities.

Valid Time. Because facts have valid time and attributes are the modeling constructs
used to capture facts at the conceptual level, a temporal ER model should support the
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possibility to register valid time for attributes. Built-in support for valid time is impor-
tant because it is fundamentally important in a large class of applications to know at
what times the facts recorded in the database are true.

Three different cases arise in connection with the recording (or non-recording) of
the valid time of an attribute. First, if we record the valid time, this implies that we
obtain the ability to capture all the values that have ever been valid for the attribute.
Second, if we do not register the valid time of the attribute, this may be because the
value of the attribute either never changes or because we are only interested in the
current value of the attribute. Third, it could be that we do not know the valid time of
the attribute – we know the valid value, but not the time when it is valid.

An inherent constraint applies to valid time and lifespans. Specifically, at any time
during the database’s evolution, the valid time of any attribute value of any entity must
be a subset of the lifespan of the entity. Since we perceive a relationship as an attribute
of the participating entities, the data model should also provide built-in support for cap-
turing the valid times of relationships. Superclass/subclass relationships are excluded
because these are not considered attributes of the involved entities.

Transaction Time. Transaction time is similar to valid time, but there are also some
differences. Anything, not just facts, that may be stored in a database has a transaction
time. With transaction time captured, past states of a database are retained, which is es-
sential in applications with accountability or trace-ability requirements, of which there
are many. The need for recording transaction time is thus widespread. Since transaction
time is orthogonal to both existence time and valid time this implies that entities and
attribute values can be captured in the database proactively and retroactively.

User-Defined Time. User-defined time attributes, i.e., time-valued attributes with no
special support, are already available in the ER model and should also be available in a
temporally extended ER model. Figure 2 summarizes the temporal support we believe
a temporal ER model must offer.

Entity types Relationship types Superclass/subclass Attributes
Relationships

Lifespan Yes No No No
Valid time No Yes No Yes
Transaction time Yes Yes No Yes

Fig. 2. Modeling Constructs and Their Supported Aspects of Time

Maximally Meaningful and Flexible Support. So far, we have argued that the different
temporal aspects should be supported for exactly the modeling constructs where the
aspects make sense. This provides maximum meaningful temporal support.

The different temporal aspects may or may not, depending on the application re-
quirements, be captured in the database. Therefore, the support for these aspects should
be user-specifiable and maximally flexible. This is achieved if the temporal ER model
permits the database designer to decide which temporal aspects to capture of the dif-
ferent database elements. It must be possible to make these decisions independently for
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independent database elements. Following this principle, the granules of temporal sup-
port in an ER model are the following: Entity types, relationship types, and attributes.

This means that the ER model should allow the designer to, e.g., specify the tem-
poral support of an attribute and the attribute’s entity independently. For example, the
designer may capture lifespans for the Employee entity type while capturing both trans-
action time and valid time for some of the attributes of Employee.

Time Data Type Support. Different time data types may be used for capturing the tem-
poral aspects of database objects, including instants, time intervals, and temporal ele-
ments [11].

A temporal ER model may provide the database designer with a choice of data
types, thereby increasing the utility of the model. Instants, time intervals, and tempo-
ral elements may all be used for encoding durations. When instants are used for this
purpose, they have associated interpolation functions. The instant data type may also
encode the occurrence of instantaneous events.

Support for Interpolation. Temporal interpolation functions derive information about
times for which no data is explicitly stored in the database (see, [15, 17]). For example,
it is possible to record times when new salaries of employees take effect and then define
an interpolation function that gives the salaries of employees at any time during their
employment. In the scientific domain, interpolation is particularly important, e.g., when
variables are sampled.

Support for Granularities and Temporal (Im-) Precision. It may be that the temporal
variability of different objects in the mini-world is captured using times of different
granularities [4, 29]. It should then also be possible to capture the variability of the
different objects in the database using these different granularities. To exemplify, the
granularity of a minute may be used when recording the actual working hours of em-
ployees, while the granularity of a day may be used when recording the assignment of
employees to projects.

The temporal variability of different objects in the mini-world may be known with
different precisions [3, 5, 6, 17], and although some imprecision may be captured using
multiple granularities, granularities do not provide a general solution.

For example, the variability of an attribute may be recorded using timestamps with
the granularity of a second, but the varying values may only be known to the precision
of ±5 seconds of the recorded time. This phenomenon may be prevalent and important
to capture in scientific and monitoring applications that store measurements made by
instruments. Thus the usability of a temporal ER model would be increased if support
for temporal precision is provided.

Upward Compatibility. To increase the usability of a new ER model, it is very im-
portant that legacy ER diagrams remain correct in the new model. This property, briefly
mentioned earlier, is called upward compatibility. A temporal ER model is upward com-
patible with respect to a conventional ER model if any legal conventional ER diagram
is also a legal ER diagram in the temporal model and if the semantics of the diagrams
in the two models are the same. Upward compatibility protects investments in legacy
systems and provides the basis for a smooth transition from a conventional ER model
to a temporally enhanced ER model [26]. We thus require that a temporal ER model be
upward compatible with respect to the conventional ER model it extends.



TimeERplus: A Temporal EER Model Supporting Schema Changes 49

Snapshot Reducible Temporal Support. The next property of a temporal extension is
that of snapshot reducibility [25], which may be explained as follows. A temporal ER
model that adds temporal support implicitly may provide temporal counterparts of, e.g.,
the ordinary attribute types, meaning that it provides temporal single-valued, temporal
multi-valued, temporal composite, and temporal derived attribute types.

These temporal attribute types may be snapshot reducible with respect to their corre-
sponding snapshot attribute types. In general, this occurs if snapshots of the databases
described by a temporal ER diagram are the same as the databases described by the
corresponding snapshot ER diagram where all temporal constructs are replaced by their
snapshot counterparts.

Beyond attributes, snapshot reducibility also applies to the various constraints that
may be defined on relationship types, including specialized relationship types such as
superclass/subclass (ISA) and PART-OF (composite/component) relationships.

Time Sequence Attributes. Some attributes are expected to change over time within
specific patterns of time. Such attributes are called time sequence attributes [14], but
are also known as time-series data [20] or periodic attributes [22]. An example of an
attribute in our company database that could store time sequence data is the profit at-
tribute of the Department entity type.

Update Patterns. The update pattern of an attribute is the times the value of the attribute
is updated in the database [16], e.g., update patterns relate to transaction time. Given
that two or more attributes should be updated simultaneously in the database, e.g, they
follow the same update pattern, that is the update of one attribute triggers an update of
the other attributes, then we will say that such attributes participate in an update pattern
relationship.

Observation Patterns. The observation pattern for an attribute is the times it is given
a particular value [16] in the mini-world, e.g., observation patterns relate to valid time.
The assignment of the value can be caused by an observation, a prediction or an esti-
mation. We could have a situation where we actually know that if one attribute of an
entity type change its value in the mini-world this implies that another attribute also
must change its value and vice versa.

Schema Changes. Given that we know, at the design time of the database, that the
schema of the database will change at a given point in time this would be useful infor-
mation to model in the TIMEERplus diagram.

Changes to a database schema can be divided into three different concepts: schema
modification, schema evolution, and schema versioning. The three concepts are defined
as follows in Roddick, et al. [23].

1. Schema Modification is accommodated when a database system allows for
changes to the schema definition of a populated database

2. Schema Evolution is accommodated when a database system permits the modi-
fication of the database schema without loss of the semantic content of existing
data

3. Schema Versioning is accommodated when the database system allows the view-
ing of all data, both retrospectively and prospectively, through user definable inter-
faces
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3 The Time Extended EER Model (TIMEERplus)

In this sect. the Time-Extended-EER model, TIMEERplus, is presented. First, the
model on which to base the new model and positions regarding the fundamental de-
sign decisions from Sect. 2.1 are chosen. Second, the constructs of the new model are
described.

The Basic Model of TIMEERplus. Since its publication, the ER model [2] has had vari-
ous notations and semantics. It has been extended in order to capture superclass/subclass
relationships and complex entity types, to name but a few extensions, and is then known
as the EER model. Because no EER model has become a standard, the EER model pre-
sented by Elmasri and Navathe [8] is chosen as the basic model of TIMEERplus. The
reader is assumed to be familiar with this model.

With respect to the fundamental design decisions presented in Sect. 2, the following
choices are made. We have chosen to introduce new temporal constructs and provide
implicit temporal support for the TIMEERplus model. This choice makes it possible to
achieve a temporal ER model that is upward compatible with the ER model it extends.
We have chosen to provide mapping algorithms for the TIMEERplus model. The algo-
rithm is under development. This decision is consistent with most temporal ER models
being considered design models and with current practice in industry. A description of
the mapping algorithms is beyond the context of this paper.

TIMEERplus supports the time data types “instant” and “temporal element.”

3.1 TIMEERplus Modeling Constructs

We proceed to present the modeling constructs of TIMEERplus model. The TIMEER
plus extends the EER model to include, where indicated, built-in temporal support for
entities, relationships, superclasses/subclasses, and attributes.

Regular Entity Types. A regular entity type is represented by a rectangle. Since all
entities represented by an entity type have existence time, modeled by lifespans in the
database, and a transaction time aspect, the TIMEERplus model offers support for lifes-
pans and transaction time for entity types.

If the lifespan or the transaction time of an entity type is to be captured, this is indi-
cated by placing an LS (LifeSpan) or a TT (Transaction Time) in the upper right corner
of the rectangle, respectively. If both lifespan and the transaction time are captured,
an LT (Lifespan and Transaction time) is placed as before. Entity types that capture at
least one temporal aspect are termed temporal entity types; otherwise, they are termed
non-temporal.

In Fig. 1 in Example 1, we model that we want to capture both the lifespan and
the transaction time of the entity type Employee, by associating it with two different
time period entity types, Lifespan and Transaction Time. In the TIMEERplus this is
modeled as shown in Fig. 4, see page 55.

Weak Entity Types. Weak entity types are represented by double rectangles and are used
to represent entities that are existence dependent on specific entities of another entity
type and that cannot by themselves be lexically uniquely identified. A weak entity type
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must therefore be related via an (or a chain of) identifying relationship type (repre-
sented by a double diamond) to at least one regular entity type that is then the owner
of the weak entity type. Weak entity types can be specified to capture the same tempo-
ral aspects as regular entity types, and this specification is independent of the temporal
support specified for the owner(s) of the weak entity type. It is an inherent constraint
that the existence time of a weak entity must be included in the existence time of the
owner entity, due to the existence dependency.

Attributes. Entities are characterized by their attributes. A single-valued attribute is
represented by an oval, a multi-valued attribute is represented by a double oval, and a
composite attribute is represented by an oval connected directly to other ovals repre-
senting the component attributes of the composite attribute.

All facts, modeled by attributes, have a valid time and a transaction time aspect,
and the TIMEERplus model offers support for valid time and transaction time for all
attribute types. If the valid time of an attribute is be captured, a VT is placed to the right
in the oval; if transaction time is captured, a TT is placed as before. If both the valid
time and the transaction time is captured, a BT (BiTemporal) is used. The components
of a temporal composite attribute inherit the temporal specification for the composite
attribute because we assume that all the components change synchronously. If no tem-
poral aspects of an attribute are captured, we call the attribute non-temporal; otherwise,
it is temporal.

It is meaningful for both temporal and non-temporal entity types to have temporal
and non-temporal attributes. Temporal entity types may have non-temporal attributes;
for example, it could be that the application at hand does not require the capture of
any temporal aspects of the attributes of a temporal entity type; it could also be that
some attributes are temporal. Similarly, for non-temporal entity types, it is possible that
temporal aspects of some attributes are to be captured.

In Fig. 1 in Example 1, we model that we want to capture the valid time and the
transaction time of the Salary of an Employee. To be able to capture the valid time,
we convert the attribute Salary into a relationship type, Salary, between Employee and
Salary period, with an single-valued attribute Amount to actually record the salary.
The transaction time is captured by associating the attributes Insertion date and Dele-
tion date with the relationship. In TIMEERplus this may be modeled as shown in Fig. 4.

Key Attributes. To indicate that a set of attributes represent the key of an entity type, the
attribute names of the involved attributes are underlined. Key attributes of an entity type
can be specified as temporal or non-temporal. Simple and composite attributes may be
specified as key attributes.

We allow key attributes to be specified as temporal and define these in terms of
conventional keys and snapshot reducibility. Snapshot reducibility ensures, for exam-
ple, that a single-valued attribute capturing valid time, at any point in the valid-time
domain, is single-valued. Thus, combining snapshot reducibility of attribute types with
the application of the conventional key constraint, we have that any key attribute at any
point in time uniquely identifies an entity.

Relationship Types. A relationship type is represented by a diamond. The model of-
fers support for valid and transaction time for relationship types and the indication is
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placed in the lower corner of the diamond. If some temporal aspect is captured for a
relationship type, we call it temporal; otherwise, it is non-temporal.

In Fig.1 in Example 1, we model that we want to capture the valid time of the
relationship Works for between Employee and Project. We therefore have to make the
relationship type ternary by associating an entity type Work period with the attributes
Start date and End date to model this. A corresponding TIMEERplus diagram is shown
in Fig. 4.

The temporal support of a relationship type can be specified independently of the
temporal support for the participating entity types.

Snapshot Participation Constraints. The snapshot participation constraint of an entity
type E with respect to a relationship type R is represented by placing min and max
values in parentheses by the line connecting entity type E with relationship type R. If
min = 0 then the participation of the entities of E is optional; if min ≥ 1 then the
participation is total (mandatory). If max = 1, this means that the entities of E cannot
participate in more than one relationship at a time, whereas a max = n, with n > 1
means that E entities can participate in n relationships at a time.

3.2 Advanced Features

The previous sect. described the fundamental design of the TIMEERplus model. This
sect. proceeds to present additional features of the model.

Lifespan Participation Constraints. The snapshot participation constraints already de-
scribed constrain the participation of the entities at each isolated point in time. It is also
useful to be able to describe the participation of an entity in a relationship over the en-
tire existence time of the entity. This is useful if, for example, we want to state that an
employee only can be assigned to at most one project at a time, but can be assigned to
any number of projects and must be on at least one during the entire employment.

The snapshot participation constraint ensures that an employee participates in ex-
actly one relationship at any point in time, but it says nothing about the entire employ-
ment period. If we change the participation constraint from (1, 1) to (1, N), this means
that an employee at any single point in time is now allowed to appear in Works for N
times, which is not intended. Another type of participation constraint, called the lifes-
pan participation constraint, must instead be added to the model, making it possible to
express participation constraints throughout the existence times of the entities.

The lifespan participation constraint of entity type E with respect to relationship
type R is represented by placing min and max values in square brackets by the line
connecting entity type E with relationship type R. The lifespan participation constraint
specified for the participation of an entity type with respect to a non-temporal relation-

E R
(min,max)

[min,max]

Fig. 3. Representation of Lifespan Participation Constraint in TIMEERplus
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ship type must be the same as the specified snapshot participation constraint, for which
reason they can be omitted from the diagrams.

There are combinations of snapshot and lifespan participation constraints that are
contradictory. For constraints (a, b) and [c, d], this occurs when a > d, which is the
case for the combination of (M, N) and [1, 1].

Other cases exist where lifespan participation constraints do not add to preexist-
ing snapshot participation constraints. For example, a lifespan participation constraint
[1, N ] does not add to the snapshot participation constraint (1, 1).

Generally, we expect the min of the lifespan participation constraint to be equal to or
larger than the min of the snapshot participation constraint; and the max of the lifespan
participation constraint is expected to be equal to or larger than the max of the snapshot
participation constraint.

Using both participation constraints, we can state that any employee must be as-
signed to at most one project at a time, but must be assigned to at least one project
during the employment period. This is shown in Fig. 4.

Superclasses and Subclasses. We offer support for specifying superclass/subclass rela-
tionships. The syntax is as in the EER model.

All subclasses inherit the attributes of the their superclasses, and just as inherited
attributes cannot be given new data types, it is not possible to change the temporal
support given in the superclasses to the inherited attributes. But it is possible to add
temporal and non-temporal attributes in the subclasses.

We have chosen that subclasses inherit the temporal aspects of their superclasses
and that the inherited time specification is expandable, e.g., if we decide to capture
lifespans for Employee entities and let Secretary be a subclass of entity type Employee,
we can decide to capture both lifespans and transaction time for Secretary entities. It is
not possible to delete the inherited temporal support. This choice is consistent with the
fact that subclasses inherit all properties, and thereby also the temporal support, of their
superclasses and that it is not possible to delete or modify inherited properties, but only
to add properties.

Temporal Interpolation Functions. As described earlier, temporal interpolation func-
tions derive information about times for which no data is explicitly stored in the data-
base. Support for interpolation is perhaps particularly important in applications where
processes are monitored and variables are sampled.

We provide the designer with the possibility to define not only temporal interpola-
tion, but also derivation functions for derived attributes, and we extend the model with
temporal (and non-temporal) derived attributes. These are represented by dotted ovals
with the same possibilities for specifying temporal support as for the stored attributes.
The interpolation functions must be specified in the query language of the intended tar-
get platform, since we do not provide a query language with the TIMEERplus model.
The tool implementing the model must provide means for linking the derived attribute
with its defining query-language statement.

Time Sequence Attributes. As mentioned earlier, an example of an attribute in our
company database that could store time sequence data is the profit attribute of the De-
partment entity type. The company want to record the profit of each department on a
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monthly basis. This is indicated in the diagram by extending the temporal annotation
of the attribute BT with a M inclosed by parentheses (M), see Fig. 4. The meaning of
this is that we each month record the profit of each Department in the database. The
letter inclosed by parentheses indicates the calendar (time pattern) which determines
how often the attribute is to be recorded in the database. The specified calendar apply
only to the valid time aspect of a temporal attribute. The calendars we provide for time
sequence data is year (Y), month (M), week (W), day (D), hour (H), minute (Mi), and
second (S). All types of attributes can be specified as time sequenced given that the
valid time aspect of the attribute is captured.

Attribute Update Pattern Relationship. An example of attributes from our running ex-
ample that participates in an update pattern relationship is the attribute Level of the
Trainee entity type and the attribute Salary of the Employee entity type, since the level
of the trainee determines the salary of the trainee. The notation for the update pattern
relationship is a small circle annotated with up inside and lines connecting the circle
and the participating attributes, see Fig. 4.

Even though update patterns relate to transaction time [16] it is not required that
the attributes involved in the update pattern relationship capture their transaction time
aspect. The semantics of the update is as usual for the participating attributes, e.g.,
for a non-temporal attribute this means that the new value is stored instead of the old
value and for transaction time attributes the old value is terminated and the new value
is inserted.

Attribute Observation Pattern Relationship. An example of attributes from our running
example that participates in an update pattern relationship is the attribute Title of the
Scientist entity type and the attribute Salary of the Employee entity type, since the title
of an scientist determines the salary of the scientist. The notation for the observation
pattern relationship is a small circle annotated with ob inside and lines connecting the
circle and the participating attributes, see Fig. 4.

As it is the case with attributes participating in an update pattern relationships we
do not require the attributes participating in an observation pattern relationship capture
their valid time aspect. The semantics of the assignment of new values to the attribute
remain as usual for both non-temporal and valid time attributes.

Schema Changes. Consider the running example of the paper, and let us assume that we
know that the company will start a new department called Research and Development
at November 1, 2004 . Therefore, we need to add another subclass of the employee
entity type to the database called Scientist. At the same date the registration of employ-
ees will extended with information about their address. This leads to a change in the
database schema on November 1, 2004. The notation for documenting this change is
very simple, just add {startdate, enddate} after the name of the construct, see Fig. 4.
A dash (-) is used to indicate if either the the start- or the enddate is unknown. It will
be useless to have both the startdate and the enddate specified as unknown, since this
would semanticly be the same as not using the construct. The startdate indicate when
the new construct become valid in the database, meaning that from that date it should
be possible to query the new part of the database. If the startdate is unknown we must
assume that is is valid currently and will be until the enddate. And if the enddate is
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unknown this means that it will be valid from the startdate and until “forever”. The no-
tation can also be used for documenting changes in the database schema not known at
design time.

Example 2. Figure 4 gives a TIMEERplus diagram that corresponds to the the EER
diagram given in Fig. 1.
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Fig. 4. TIMEERplus Diagram of the Example

3.3 Properties of the TIMEERplus Model

In Sect. 2 we listed a set of design goals. Having introduced TIMEERplus, we now
examine its design with respect to the goals.

Temporal Aspects Supported. We provide built-in support for capturing lifespans
and transaction time for entities. Similarly, built-in support for capturing valid time and
transaction time for attributes and relationships is provided. The model also provides
notation for specification of time sequence attributes, observation- and update pattern
relationship. Finally, user-defined time attributes are available.

Maximally Meaningful and Flexible Support. TIMEERplus provides maximally mean-
ingful and flexible temporal support, since the database designer is able for each mod-
eling construct to specify whether or not to capture each meaningful temporal aspect
of the construct. The model has optional use of the temporal constructs, providing the
database designer with the possibility of mixing temporal and non-temporal constructs
in the same diagram.

Time Data Type Support. TIMEERplus supports time data types for the modeling of
both instantaneous events and phenomena that persist in time, namely the “instant” and
“temporal element” types.

Support for Interpolation. The model provides support for defining temporal interpo-
lation functions and derivation functions for derived attributes. The interpolation func-
tions must be specified in the query language of the intended target platform – a separate
language for this is not provided.
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Support for Granularities and Temporal (Im-) Precision. The time granularities sup-
ported by TIMEERplus are second, minute, hour, day, week, month, and year. The
model does not, at present, support temporal imprecision.

Upward Compatibility. The designed model is upward compatible with respect to the
EER model [8] because we extend this model with new temporal constructs while re-
taining all original EER constructs, with their original syntax and semantics.

Snapshot Reducible Temporal Support. TIMEERplus has implicit temporal support
and includes snapshot reducible temporal counterparts of the ordinary attribute types,
i.e., provides temporal single valued, temporal multi-valued, temporal composite, and
temporal derived attribute types.

Next, the snapshot participation constraints are also snapshot reducible, while lifes-
pan participation constraints have no non-temporal counterparts. Finally, the constraints
associated with superclass/subclass relationships are snapshot reducible. For example,
the temporal participation constraint (disjoint, total) for a superclass/subclass relation-
ship is snapshot reducible, so that for any snapshot of the underlying database, any
entity of the superclass is present in exactly one subclass.

Schema Changes. The TIMEERplus model provides notation for specifying changes to
the database schema explicitly in TIMEERplus diagrams. The notation can be used for
specifying schema modification, schema evolution, and schema versioning depending
on the database system support for these concepts.

4 Related Research

A comprehensive survey [12] of all previously proposed temporally extended ER mod-
els, and models published after late 1998 [1, 18, 20] have been studied. The study of
these models pointed to varying limitations in the existing models, motivating the devel-
opment of a new temporal ER model that attempted to build maximally on the insights
accumulated in the existing models.

More specifically, the existing temporal ER models represent quite diverse
approaches to capturing temporal aspects of data at the conceptual level, and it is our
contention that the models, to varying degrees, have succeeded in more elegantly cap-
turing the temporal aspects of data than does the ER model. However, evaluating the
existing models against a list of desirable properties [13] reveals that no single model
satisfies all properties, but that the models collectively cover the design space well.

As mentioned in the introduction, a common characteristic for the existing tem-
porally extended ER models is that few or no specific requirements to the models are
given by their designers. In contrast, we have based the design of the TIMEERplus
model on the design goals presented in Sect. 2, some of which are based on ontologi-
cal considerations, and some of which are derived from previously presented properties
[13].

One approach to developing a temporal extension is to give the existing ER con-
structs new temporal semantics. This approach has been followed in several models
[7, 9, 19], and it has its strong points. But there are also weaknesses. The main weak-
ness is the lack of upward compatibility, and for this reason we have not chosen this
approach for TIMEERplus.
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Another approach is to retain the existing ER constructs with their usual semantics
and introduce new temporal constructs that provide temporal support. This can be done
by offering new modeling constructs with either implicit temporal support [1, 17, 18,
20–22, 27, 28, 30] or explicit temporal support [10]. Since the latter type of support still
leads to cluttered diagrams, although to a lesser degree than in the ER model, we have
chosen to add new temporal constructs with implicit temporal support.

The ideal temporal ER model is easy to understand in terms of the ER model; does
not invalidate legacy diagrams and database applications; and does not restrict databases
to be temporal, but rather permits the designer to mix temporal and non-temporal parts.
We believe that the TIMEERplus model has these properties.

The concept of snapshot reducibility applies to attributes as well as the various con-
straints that may be defined on relationship types, including those on superclass/subclass
hierarchies. Satisfying reducibility is very important because this provides a uniform
and natural generalization of standard, snapshot ER modeling constructs to temporal
counterparts.

Although we have seen that this requirement never previously has been applied ex-
plicitly to an ER model, aspects of existing temporal ER models turn out to be snapshot
reducible. Only three temporal ER models have snapshot reducible relationship con-
straints [18, 27, 30], while most models have snapshot reducible attributes [7, 9, 10, 17–
20, 22, 30], This latter property of the various models follows implicitly from how
the temporal attributes are defined as shorthands for patterns made up of conventional
constructs, from the properties of the models’ mapping algorithms, from explicitly for-
mulated semantics for the attributes, or from the attributes being defined in terms of
snapshot reducible temporal relationships types.

The TIMEERplus model provides snapshot reducible attribute types as well as rela-
tionship constraints. Lifespan participation constraints do not have non-temporal coun-
terparts to reduce to.

All but two of the existing temporal ER models support valid time only. We believe
that the support for transaction time is just as important, and TIMEERplus supports
both time aspects. Support for lifespans is also included, which is only provided by
a subset of the existing temporal ER models [7, 9, 17, 19, 28, 30]. Only two models
support time sequence attributes [20, 22]. The TIMEERplus model is the only model
that supports observation- and update pattern relationships and schema changes.

5 Summary

Temporal aspects are prevalent in most real-world database applications, but they are
also difficult to capture elegantly using the ER model. In an attempt to alleviate this
problem, this paper presents a temporally extended ER model capable of more elegantly
and naturally capturing temporal aspects of data.

The TIMEERplus model systematically extends the EER model [8] with new, en-
hanced modeling constructs with implicit temporal support. The new constructs provide
built-in support for capturing lifespans of entities and relationships and provides built-in
support for capturing valid times for attributes and relationships. And the model pro-
vides built-in support for capturing the transaction times for all modeling constructs.
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The temporal aspects of the modeling constructs are captured using either instants or
temporal elements, and support for multiple granularities is included. The database de-
signer may, or may not, use the new temporal constructs, and the resulting model is up-
ward compatible with respect to the EER model. Furthermore, the TIMEERplus model
offers enhanced modeling construct for modeling time sequenced attributes, update pat-
tern relationships, observation pattern relationships, and notation for describing changes
to the database schema.
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Abstract. The need for accessing independently developed database
systems using a unified or multiple global view(s) has been well recog-
nised. This paper addresses the problem of redundancy of object retrieval
in a multidatabase setting. We present the materialisation rules we have
used for supporting data integration in a heterogeneous database envi-
ronment. The materialisation rules are capable of directing the global
query processor to combine data from different databases. Also, these
rules are able to reconcile database heterogeneity that may be found due
to independent database design.

1 Introduction

Database integration frequently involves combining information about the same
object from different sources. This information could be replicated a number
of times in these sources. Correlating data from different databases about the
same object is redundant and time expensive; therefore a technique to eliminate
redundancy and to reduce retrieval time is needed. Moreover, objects from dif-
ferent local databases are likely to be heterogeneous and this heterogeneity must
be reconciled when data is aggregated and represented to the global users. In our
research [1–3] we propose that interoperability between a set of heterogeneous
databases is best achieved by building several tailored global views to fully meet
user requirements and this allows local conflicts to be resolved in various ways
(Fig. 1). Local database schemas are first translated into corresponding compo-
nent schemas presented in a canonical data model [4, 5] which is compliant with
the ODMG standard. Multiple views can support multiple semantics via cus-
tomisability, in that users can define several views over the same local databases
reflecting different needs. The views are defined in terms of virtual classes and
materialisation rules [2, 6]. Virtual classes define the conceptual schema of each
global view. A virtual class is created by integrating a number of related local
classes in the local databases. This is achieved by applying one or more opera-
tors (union, merge, intersection) from our operator integration language [3]. The
materialisation rules act as a proxy [7, 8] and they are semantically rich as they
are responsible for: first, reconciling schema differences between entities which
are the components of virtual classes; second, mapping the global queries into
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KB KBKB

Component Schema Component Schema 
in CDMin CDM in CDM

Set of virtual classes Set of virtual classes Set of virtual classes

Local DB1 Local DB2 Local DBn

Component Schema 

Set of Rules Set of Rules Set of Rules

Fig. 1. Multiple Views for interoperability between a set of heterogeneous databases

local queries that are able to retrieve relevant data from the corresponding local
classes in component databases. In other words the materialisation rules provide
1: N mapping of global objects to objects in local databases [9].

A fundamental issue here concerns the problem of retrieving the instances of
the generated virtual classes (derived instances) from their corresponding local
ones. Derived instances of a virtual class typically represent a combination of one
or more real instances (actual stored values in local databases). In particular, the
value of an attribute of a derived instance may be obtained as a result of com-
bining values from attributes of several real instances. A derived instance (global
object) differs from a real instance (local object) because a derived instance may
represent an assortment of values that do not actually appear together as an
instance in any local database.

In this paper, we present the materialisation rules we use to support the
retrieval of global objects in global views. These rules are capable of combin-
ing information about the same object without redundancy. They are also able
to reconcile any semantic heterogeneity that may be found due to independent
local database design. In section 2, we present the general syntax of our ma-
terialisation rules. In section 3, we discuss our observations on the problem of
matching objects in different local databases. Section 4 provides a sample case
for integrating two local classes and represents the materialisation rules for this
sample case. Section 5 presents our conclusion and future work.

2 The Materialisation Rules Syntax

The rules we are using have a familiar production rule syntax [10] of the form:

Rule <name> on retrieve to <virtual class properties>,
do instead: retrieve <local corresponding properties>

where <condition> // the condition under which the rule is executed.
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Each rule is given a unique rule-name, which is used by the global query processor
and also to remove the rule by name when it is no longer needed. The keyword
instead indicates that the rule directs the global query processor to retrieve data
that corresponds to local corresponding properties. At the time of accessing
a global object, the do instead part of the corresponding materialisation rule
specifies the corresponding global object properties in local objects. If a certain
global object property doesn’t have a corresponding local property in a certain
object, a NOT APPLICABLE value should be assigned to the corresponding do
instead rule element. The < condition > reflects different global object extensions
which are recognised based on a user defined function which in turn is able to
recognise different local object extensions based on the Object Identifier (OID).

3 Observations on Global Object Identification

A fundamental issue in integrating information from heterogeneous distributed
databases is the problem of object matching, that is, determining when object
representations in different databases refer to the same real world object [11].
Most previous approaches to creating virtual integrated views have assumed that
for each type of object (in the real world) there is some form of possible derived
universal virtual key [12–14] that can be used to identify different representations
of the same real world object (i.e. one approach is to use common attributes in
each class and those attributes virtually represent Object IDentifiers (OIDs)).
We define a ‘g=’ function1 that compares two objects by using their virtual
OIDs and determines whether two local objects are equivalent. This function is
essential for materialisation rules, as different rules are generated for different
types of local objects. The definition of this function is left to the user as it
is difficult if not impossible to automate. For example, the user could assume
that the combination of (first name, surname, date of birth) represent the OID
of graduate students in db1 GradStudent and the the combination of (f name,
family name, birthdate) represent the OID of employees in in db2 Employee
(see the example next). In this case the ‘g=’ function is a simple equivalent
function that compares the values of corresponding attributes (i.e. first name
and f name, surname and family name, date of birth and birthdate). If the result
of the comparison is true this means the two comparable OIDs and ultimately
both objects represents the same real world object.

4 Case Example

We describe the materialisation rules by using a sample integration for schemas
presented in Fig. 2. The first schema (DB1) defines information for a graduate
student database, while the second schema (DB2) defines information for an
employee database. For simplicity, we limit the information to one class per
1 Note how the ‘g=’ function in the case example affects the retrieving of instances

and how the rules are directed to the local properties
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schema but the materialisation rule syntax can be applied to any number of
classes as the integration process is done using the binary integration strategy [5,
15]. Also, we include various types of heterogeneity [16, 17] in both databases to
explain how the materialisation rules are capable of reconciling this heterogeneity
at the global level. For example, we consider the following conflicts:

– Naming conflict (first name in DB1 versus f name in DB2).
– Domain conflict (the domain of first name in DB1 is a set of strings reflecting

multiple first names versus a string for the domain of f name in DB2).
– Domain conflict (the domain of live in DB1 is a set of addresses reflecting

the fact that the student could have more than one address (term address
and vacation address) while the domain of live in DB2 is address).

– Present - Absent conflict (course in DB1 and position in DB2).
– Semantic conflict (salary in DB1 is represented in Euros while salary in DB2

is represented in Sterling).

Employee

f_name: string

family_name: string

birthdate: date

position: string

live: address

salary: float

Instances

DB1 DB2

GradStudent

first_name: set(string)

surname: string

live: set(address)

salary: float

course: string

date_of_birth: date

Fig. 2. Two local classes to be integrated by using the Union operator

The extensions (instances) of local classes are represented as ovals in Fig. 2.
Grey ovals represent extensions that may belong to GradStudent and Employee
classes. The integrator can use one of the integration operators (union, merge,
intersection, etc) to integrate the classes in the local databases [3]. For example,
if a global user is interested in information about all part time workers in both
databases (assuming that some students work part-time while they are study-
ing), the integrator should use the Union operator. This operator integrates two
equivalent local classes c1, c2 by generating a common superclass Gc with two
subclasses Gc1, Gc2. The Gc class’s properties are the set of properties that be-
long to the intersection of the local classes’s properties. The extension of the Gc
class is the combination of the extents of the two local classes. The set of prop-
erties that belong to both classes is upward-inherited by the generated global
superclass Gc [18, 19].
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The result of applying Union on Employee and GradStudent (Fig. 3) is
three global classes: G PartTime Emp, G Employee and G GradStudent, where
G PartTime Emp is the common superclass for both Employee and GradStu-
dent. The properties of G PartTime Emp are the intersection of the local class
properties, namely {first name, surname, date of birth, live, salary}2. The prop-
erties of subclass G GradStudent are (course and all inherited properties from
G PartTime Emp). The properties of subclass G Employee are (position and all
inherited properties from G PartTime Emp). We can differentiate three types of
extensions (all ovals in Fig. 3) which reflect the real world objects at the global
level. Therefore each global class needs at most three types of materialisation
rules. We describe the materialisation rules generated for each global class as
follows:

first_name: set(string)

surname:string

date_of_birth: date

live: set(address)

salary: float

G_PartTime_Emp

Global DBGlobal DB

course: string

G_GradStudent

position: string

G_Employee

Global DB

Generalisation

Instances

Three global classes are generated and added to the global view

by using Union(GradStudent,Employee)

Fig. 3. An Example of integrating two local classes using Union operator

4.1 Materialisation Rules for G PartTime Emp

The extension of G PartTime Emp is the union of the local class extents (all
ovals in Fig. 3), thus G PartTime Emp needs three materialisation rules:
2 We assume that semantic heterogeneity has been detected and solved and the in-

tegrator prefers the representation of DB1 at the global level (e.g. first name vs
f name, salary is represented in Euros)
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– The first rule is responsible for retrieving data for instances that belong to
GradStudent and do not belong to Employee (hashed ovals in Fig. 3). The
rule retrieves these instances from GradStudent instances:

Define rule1 view_G_PartTime_Emp_rule1 on retrieve to
view_G_PartTime_Emp.first_name, view_G_PartTime_Emp.surname,
view_G_PartTime_Emp.date_of_birth, view_G_PartTime_Emp.live,
view_G_PartTime_Emp.salary
do instead retrieve
db1_GradStudent.first_name, db1_GradStudent.surname,
db1_GradStudent.date_of_birth, db1_GradStudent.live,
db1_GradStudent.salary
where current.OID = db1_GradStudent.OID &
not(db1_GradStudent.OID =g db2_Employee.OID)

– The second rule is responsible for retrieving data for instances that belong
to Employee but do not belong to GradStudent (black ovals in Fig. 3). It
retrieves these instances from Employee instances:

Define rule2 view_G_PartTime_Emp_rule2 on retrieve to
view_G_PartTime_Emp.first_name, view_G_PartTime_Emp.surname,
view_G_PartTime_Emp.date_of_birth, view_G_PartTime_Emp.live,
view_G_PartTime_Emp.salary
do instead retrieve
db2_Employee.f_name, db2_Employee.family_name,
db2_Employee.birthdate, db2_Employee.live,
SterlingToEuro(db2_Employee.salary)
where current.OID = db2_Employee.OID &
not(db1_GradStudent.OID =g db2_Employee.OID)

As this rule retrieves instances that belong to Employee the do instead part
of the rule replaces the global attribute names with the ones that correspond
to the Employee attribute names (f name, family name, birthdate). This will
solve the naming conflict mentioned earlier. The rule also replaces the global
attribute live with the attribute live of Employee. This is to make sure that
the domain of live is set(address) when global instances correspond to the
Employee instances. SterlingToEuro is a function that converts the salary
from Sterling to Euros and its code is normally defined by the integrator.
This function shows how the materialisation rules are capable of reconcil-
ing semantic heterogeneity that may be found during the integration process.

– The third rule is responsible for retrieving data for the intersecting extents
(grey ovals in Fig. 3). It basically retrieves the data from GradStudent or Em-
ployee or both of them. Note that this is a special case where instances belong
to both local classes. This occurs when a person is registered as a GradStu-
dent in DB1 and an Employee in DB2. Thus when the G Employee object
and G GradStudent object represent the same real world object (i.e. if they
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have the same name), our materialisation rule attached to G PartTime Emp
retrieves the data of this type of instance from either one or both local classes:

Define rule3 view_G_PartTime_Emp_rule3 on retrieve to
view_G_PartTime_Emp.first_name, view_G_PartTime_Emp.surname,
view_G_PartTime_Emp.date_of_birth, view_G_PartTime_Emp.live,
view_G_ PartTime_Emp.salary
do instead retrieve
db1_GradStudent.first_name, db1_GradStudent.surname,
db1_GradStudent.date_of_birth, db1_GradStudent.live,
Function(db1_GradStudent.salary,db2_Employee.salary)
where db1_GradStudent.OID =g db2_Employee.OID

This third rule is defined to retrieve the information of intersection objects
from DB1 as the definition of GradStudent structure is semantically richer
than Employee (first name attribute has a set of string domain and live
attribute has a set of address domain). The salary is retrieved by applying
a function on both local salaries (db1 GradStudent.salary, db2 Employee.
salary). This function could be defined to: either combine both salaries if a
person works part-time in two different places so the global salary of this
person must be accumulated and represented to the global user as one salary;
or preferably to retrieve one of them (in this case it is better to retrieve salary
from DB1 as this saves the global query processor time). The function may
also convert salaries to Euro representation.

4.2 Materialisation Rules for G GradStudent

G GradStudent is defined as a subclass of G PartTime Emp, therefore it inher-
its all its attributes. To retrieve course information for G GradStudent three
materialisation rules are needed:

– The first rule is responsible for retrieving data (course information) for in-
stances that belong to GradStudent and do not belong to Employee (hashed
ovals in Fig. 3). The rule retrieves these instances from GradStudent in-
stances:

Define rule1 view_G_GradStudent on retrieve to
view_G_GradStudent.course
do instead retrieve
db1_GradStudent.course
where current.OID = db1_GradStudent.OID &
not(db1_GradStudent.OID =g db2_Employee.OID)

– The second rule is responsible for retrieving data (course information) for
instances that belong to Employee but do not belong to GradStudent (black
ovals in Fig. 3). As Employee doesn’t provide course information a not appli-
cable value is assigned to inform the query processor that it is not possible
to retrieve course information from the Employee class. The rule has the
following syntax:
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Define rule2 view_G_GradStudent on retrieve to
view_G_GradStudent.course
do instead retrieve
not_applicable
where current.OID = db2_Employee.OID &
not(db1_GradStudent.OID =g db2_Employee.OID)

– The third rule is responsible for retrieving data (course information) for
intersecting extents (grey ovals in Fig. 3). It basically retrieves this data
from GradStudent as Employee doesn’t provide course information:

Define rule3 view_G_GradStudent on retrieve to
view_G_GradStudent.course
do instead retrieve
db1_GradStudent.course
where db1_GradStudent.OID =g db2_Employee.OID

4.3 Materialisation Rules for G Employee

G Employee is defined as a subclass of G PartTime Emp therefore it inherits all
its attributes. To retrieve position information for G Employee three materiali-
sation rules are needed:

– The first rule is responsible for retrieving data (position information) for
instances that belong to Employee and do not belong to GradStudent (black
ovals in Fig. 3). The rule retrieves these instances from Employee instances:

Define rule1 view_G_Employee on retrieve to
view_G_Employee.position
do instead retrieve
db1_Employee.position
where current.OID = db2_Employee.OID &
not(db2_Employee.OID =g db1_GradStudent.OID)

– The second rule is responsible for retrieving data (position information) for
instances that belong to GradStudent but do not belong to Employee (hashed
ovals in Fig. 3). As GradStudent doesn’t provide position information a not
applicable value is assigned to inform the query processor that it is not
possible to retrieve position information from the GradStudent class. The
rule has the following syntax:

Define rule2 view_G_Employee on retrieve to
view_G_Employee.position
do instead retrieve
not_applicable
where current.OID = db1_GradStudent.OID &
not(db1_GradStudent.OID =g db2_Employee.OID)
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– The third rule is responsible for retrieving data (position information) for
intersecting extents (grey ovals in Fig. 3). It basically retrieves this data from
Employee as GradStudent doesn’t provide position information:

Define rule3 view_G_Employee on retrieve to
view_G_Employee.position
do instead retrieve
db2_Employee.position
where db1_GradStudent.OID =g db2_Employee.OID

5 Conclusion and Future Work

This paper is concerned with correlating data from different databases. We de-
scribed the materialisation rules we use to support global views that are used to
achieve interoperability between a set of heterogeneous databases. These rules
are able to map queries against global concepts into queries against local ones.
The rules eliminate redundancy when different databases contain data about
the same object. Also, we showed how the materialisation rules are capable of
solving local semantic heterogeneities when data is retrieved and represented
at the global level. The example presented in this paper shows the materialisa-
tion rules for integrating two equivalent classes. The same concept apply when
we integrate two classes that have different types of relationship (overlap, in-
clusion, or semantically not related). The current materialisation rules support
data retrieval only. We are now investigating the possibility of enhancing the
materialisation rules to support update and delete at the global level.
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Abstract. This paper is concerned with the problem of answering queries us-
ing views in the presence of functional dependencies. Previous algorithms for
answering queries using views, such as the MiniCon algorithm, have not taken
into account the presence of functional dependencies. As a consequence, these
algorithms may miss query rewritings in the presence of such dependencies. In
this paper, we present an extension of the MiniCon algorithm to handle the pres-
ence of functional dependencies while still retaining the main properties of the
algorithm and its computational advantage over the other algorithms.

1 Introduction

Data integration from multiple disparate data sources over the Internet has recently
attracted a lot of attention in both the database and AI communities [1–4]. Data in-
tegration deals with pre-existing and autonomous data sources that have been created
independently. It aims to provide a uniform interface to the underlying data sources,
which allows users to make queries using the interface in terms of a mediated schema
rather than interacting directly with the relevant sources using their individual schemas
and combining the data from them. One main stage of data integration is query refor-
mulation in which a user query over the mediated schema is reformulated into queries
over the data-source schemas. A typical approach to query reformulation is called lo-
cal as view, in which data sources are described by views over the mediated schema.
The objective of query reformulation in this approach is to reformulate the user query
using the given views (data source descriptions). The problem of query reformulation
using the local-as-view approach is closely related to the broader problem of answering
queries using views.

In this paper, we consider the problem of answering conjunctive queries using a
large set of conjunctive views in the presence of functional dependencies. In the con-
text of data integration, a number of algorithms, such as the MiniCon algorithm [5],
have been developed for query reformulation. However, the presence of functional de-
pendencies in the mediated schema has not been taken into account in these algorithms.
As a consequence, these algorithms may miss query rewritings in the presence of such
dependencies.

Example 1. Consider the following mediated schema that is used throughout this paper:
student(S, P, Y ), taught(P, D), and program(P, C). The student relation describes
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the degree program P a student S takes and the year Y the student is in. The taught
relation shows the department D in which a degree program P is taught. The program
relation states the program code C of a degree program P . In the mediated schema, we
also assume that a student takes only one degree program and is in a specific year, a
degree program is taught in only one department, and a degree program has a unique
program code. We therefore have the following functional dependencies in the mediated
schema: student : S → P , S → Y ; taught : P → D; program : P → C.

Suppose we have three data sources described by three views:
v1(S′, Y ′, D′) :- student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) :- student(S′, P ′, Y ′).
v3(P ′, C′) :- program(P ′, C′).

v1, v2 and v3 provide data showing the year and department a student is in, the
degree program a student takes, and the program code of a degree program, respectively.

Assume that a user asks which degree program a student takes and in which year the
student is: q(S, P, Y ) :- student(S, P, Y ). The following is a correct rewriting of the
query: q′(S′, P ′, Y ′) :- v1(S′, Y ′, D′), v2(S′, P ′). The rewriting is correct only because
the functional dependencies S → P and S → Y hold in the mediated schema.

Example 2. Suppose that a user asks in which department the degree program cs401 is
taught: q(D) :- taught(P, D), program(P, C), C = cs401. The following is a correct
rewriting of the query:

q′(D′) :- v1(S′, Y ′, D′), v2(S′, P ′), v3(P ′, C′), C′ = cs401.
The rewriting is correct only because the functional dependencies, S → P and P → D,
hold in the mediated schema. In particular, we have the transitive functional depen-
dency, S → D.

The previous algorithms for answering queries using views, such as the MiniCon
algorithm, however fail to generate the above two rewritings since they do not take into
account the presence of functional dependencies in the mediated schema. In this paper,
we present an extension of the MiniCon algorithm for answering queries using views
in the presence of functional dependencies. The extended MiniCon algorithm retains
the main properties of the MiniCon algorithm and its computational advantage over the
other algorithms. The paper is organised as follows. Section 2 describes the notation
used in the paper and formally defines the problem. Section 3 gives a brief review of
the MiniCon algorithm. Section 4 describes our extension of the MiniCon algorithm.
Section 5 briefly discusses related work. We finally conclude in Section 6.

2 Preliminaries

Definition 1. (Mediated Schema, Query and View) A mediated schema consists of
a set of database relations over which user queries can be made and views describing
data sources can be defined. A query is a conjunctive query of the form:

q(X) :- r1(X1),..., rn(Xn)
over the mediated schema, where X ,X1,...,Xn are tuples containing either variables or
constants and X ⊆ X1∪...∪Xn. The variables in X are the distinguished variables of
the query and all the other variables are existential variables. A view is a named query
describing a data source.
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Definition 2. (Query Containment and Equivalence) A query Q1 is contained in a
query Q2, denoted by Q1 � Q2, if for any database instance D, the answer of evalu-
ating Q1 over D, Q1(D), is a subset of the answer of evaluating Q2 over D, Q2(D),
that is Q1(D) ⊆ Q2(D). Q1 is equivalent to Q2, denoted by Q1 ≡ Q2, if Q1 � Q2

and Q2 � Q1.

Definition 3. (Contained Rewriting and Equivalent Rewriting) Let Q be a query
over a mediated schema, V = V1, ..., Vn be a set of views over the same mediated
schema, and L be a query language. The query Q′ in L using V is a contained rewriting
of Q if Q′(V) � Q, and an equivalent rewriting of Q if Q′(V) ≡ Q.

In the context of data integration, since data sources are often pre-existing and au-
tonomous and have been created independently, it is often not possible for us to gener-
ate an equivalent rewriting of a user query. Instead we want to be able to generate the
maximally-contained rewriting that provides all the possible answers from a given set
of data sources.

Definition 4 (Maximally-Contained Rewriting). Let Q be a query over a mediated
schema, V = V1, ..., Vn be a set of views over the same mediated schema, and L be a
query language. The query Q′ in L using V is a maximally-contained rewriting of Q if
(1) Q′(V) � Q, and (2) there is no query Q′′ in L using V that is not equivalent to Q′,
such that Q′(V) � Q′′(V) � Q.

Definition 5 (Functional Dependencies). A functional dependency r : a1, ..., an → b
in the mediated schema, where a1, ..., an and b refer to attributes in the relation r, states
that for every two tuples t and u in r if t.ai = u.ai for i = 1, ..., n, then t.b = u.b.

In the presence of functional dependencies in the mediated schema, query contain-
ment, query equivalence, contained rewritings, equivalent rewritings, and maximally-
contained rewritings can be defined accordingly, taking into account the presence of
such dependencies. For simplicity of the paper, we do not introduce any new nota-
tion to denote these. But whenever we talk about contained rewritings and maximally-
contained rewritings, we always make it clear whether the presence of functional de-
pendencies in the mediated schema has been taken into account.

The Problem: Given a conjunctive query Q over the mediated schema with a set of
functional dependencies F , and a set of conjunctive views V = V1, ..., Vn also over
the mediated schema describing a set of data sources S = S1, ..., Sn, the problem of
answering conjunctive queries using conjunctive views in the presence of functional
dependencies is to generate every conjunctive query Q′ over V , which is a contained
rewriting of Q in the presence of F such that the union of all the contained rewritings
of Q is a maximally-contained rewriting of Q using V in the presence of F .

3 The MiniCon Algorithm

The MiniCon algorithm [5] is one of the algorithms for answering queries using views
developed in the context of data integration. It generates all the contained rewritings of
a given query, Q, whose union forms a maximally-contained rewriting of Q. In order to
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do this, it first finds every view that covers a minimal set of subgoals in Q as required
and then combines every set of selected views that covers pair-wise disjoint subsets
of subgoals in Q to generate a conjunctive rewriting that is contained in Q. Given a
mapping τ from V ars(Q) to V ars(V ), where V ars(Q) and V ars(V ) denote the sets
of variables in a query Q and a view V respectively, a view subgoal g′ is said to cover
a query subgoal g if τ(g) = g′.

To find a view that covers a minimal set of subgoals in Q as required, the MiniCon
algorithm first finds a view V containing a subgoal g′ that a subgoal g in Q can be
mapped to by a partial mapping from g to g′. A partial mapping from g to g′ can be
found by finding a unifier θ from g to g′, i.e., θ is a variable mapping from g to g′ such
that θ(g) = θ(g′). In the meanwhile, the unifier θ also needs to meet the requirement
that the distinguished query variables in the query subgoal g are mapped to the distin-
guished view variables in the view subgoal g′. Once it finds the partial mapping, it then
considers the joins between the view V and some of the other subgoals in Q and finds
out whether any of the other subgoals in Q need to be mapped to subgoals in V , given
that g will be mapped to g′. If so the minimal set of such subgoals is obtained. The re-
quirement for including any of the other query subgoals in the minimal set of subgoals
in Q that need to be mapped to subgoals in V is that if any existential query variable in
the query subgoal g is part of a join predicate between g and the other query subgoal,
and it has not been mapped to a distinguished view variable.

The minimal set of subgoals in Q and the corresponding mapping information are
contained in a so called MiniCon Description (MCD). If it turns out that a view V does
not cover the minimal set of subgoals in Q as required, no MCD will be generated for
Q over V . The MCD for Q over V ensures that V covers the minimal set of subgoals
in Q that need to be mapped to subgoals in V so that V can be used in a non-redundant
rewriting of the corresponding subgoals in Q. Therefore, the MiniCon algorithm deals
with combinations of relevant views, each covering a set of subgoals in Q, as candidate
rewritings. In the second phase, the MCDs that cover pair-wise disjoint sets of subgoals
in Q are combined to generate the rewritings.

The MiniCon algorithm, in particular, considers a mapping from a query to a spe-
cialization of a view if no mapping from the query to the view itself exists, where some
of the distinguished variables in the view may have been equated. Every MCD has an
associated head homomorphism. A head homomorphism h on a view V is a mapping
from V ars(V ) to V ars(V ) that is identity on the existential variables, but may equate
distinguished variables. A head homomorphism on a view maps it to one of its special-
isations.

Definition 6 (MiniCon Descriptions). A MCD C for a query Q over a view V is a
tuple of the form

(hC , V (Y )C , ϕC , GC)

where:

– hC is a head homomorphism on V ,
– V (Y )C is the result of applying hC to the head of V , i.e., Y = hC(A), where A

are the head variables of V ,
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– ϕC is a partial mapping from V ars(Q) to hC(V ars(V )),
– GC is a subset of the subgoals in Q which are covered by some subgoals in V (Y )C

using the mapping ϕC .

In the above definition, ϕC is a mapping from a set of variables in Q to a set of
specialized variables in hC(V ) obtained by applying the head homomorphism hC to
the original set of variables in V . GC is the minimal set of subgoals of Q that are
covered by hC(V ) as required, given ϕC .

Property 1 below specifies the exact conditions that need to be satisfied when decid-
ing whether an MCD can be used in a non-redundant rewriting of the query and which
query subgoals should be included in GC . The MiniCon algorithm considers only those
MCDs in which hC is the least restrictive head homomorphism necessary in order to
unify the minimal set of subgoals in the query with subgoals in a view.

Property 1. Let C be an MCD for a query Q over a view V . Then C can only be used
in a non-redundant rewriting of Q if the following conditions hold:

C1: For each distinguished variable X of Q which is in the domain of ϕC , ϕC(X)
is a distinguished variable in hC(V ).

C2: If ϕC(X) is an existential variable in hC(V ), then for every g, subgoal of Q,
that includes X (1) all the variables in g are in the domain of ϕC , and (2) ϕC(g) ∈
hC(V ).

Clause C1 makes sure that every distinguished query variable in the query is substi-
tuted by a distinguished view variable in a view that is used in a rewriting of the query.
Clause C2 guarantees that if a query variable X is part of a join predicate in the query,
which is not enforced by the view, then ϕC(X) must be a distinguished view variable
so the join predicate can be applied in the rewriting.

Property 2 below states the conditions that need to be satisfied when the MiniCon
algorithm combines MCDs to generate non-redundant rewritings of a query so that only
the MCDs that cover pair-wise disjoint subsets of subgoals of the query are combined.

Property 2. Given a query q, a set of views V , and the set of MCDs C for q over V , the
only combinations of MCDs that can result in non-redundant rewriting of q are of the
form C1,...,Cl, where

D1. GC1 ∪ ... ∪ GCl
= Subgoals(q), and

D2. for every i 
= j, GCi ∩ GCj = ∅.

Example 3. Suppose we have the same mediated schema as in Example 1 and 2, and
the following set of data sources:

v2(S′, P ′) : −student(S′, P ′, Y ′).
v4(S′, Y ′) : −student(S′, P ′, Y ′).
v5(P ′, D′) : −taught(P ′, D′).
v6(S′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).

Consider the following query: q(S, D) : −student(S, P, Y ), taught(P, D).
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The MiniCon algorithm creates the following MCDs1:

V (Y )C ϕC GC

v2(S
′, P ′) S → S′ 1

P → P ′

Y → Y ′

v5(P
′, D′) P → P ′ 2

D → D′

v6(S
′, D′) S → S′ 1,2

P → P ′

Y → Y ′

D → D′

Combining the above MCDs, the MiniCon algorithm generates the following two
rewritings only:

q1(S′, D′) : −v2(S′, P ′), v5(P ′, D′).
q3(S′, D′) : −v6(S′, D′).

4 Extending the MiniCon Algorithm

The MiniCon algorithm does not take into account the presence of functional depen-
dencies in the mediated schema. As we indicated in Section 1, it sometimes misses
query rewritings in the presence of such dependencies. In this section, we describe how
the MiniCon algorithm can be extended to take into account the presence of functional
dependencies and solve the problem of missing query rewritings.

Continue with the examples given in Section 1. In Example 1, we have the query:
q(S, P, Y ) : −student(S, P, Y ).

We also have the following three data sources:
v1(S′, Y ′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) : −student(S′, P ′, Y ′).
v3(P ′, C′) : −program(P ′, C′).

The MiniCon algorithm, however, cannot generate the following rewriting:
q′(S′, P ′, Y ′) : −v1(S′, Y ′, D′), v2(S′, P ′).

Though we can have a partial mapping so that the only subgoal in q can be covered
by the student subgoal in v1. It is easy to see that not all the distinguished variables
in the query subgoal can be mapped to the distinguished variables in v1. So Clause
C1 of Property 1 is violated. No MCD for q over v1 can be used in a non-redundant
rewriting of q. However, we can construct a joint view v1,2 of v1 and v2 that has all
the distinguished variables in either v1 or v2 as its distinguished variables, and all the
subgoals in either v1 or v2 as its subgoals. The joint view provides all the distinguished
variables that the distinguished variables in the query subgoal can be mapped to. We can
therefore have an MCD for q over v1,2 covering the only subgoal in q, which satisfies
Clause C1 of Property 1 and can be used to generate a non-redundant rewriting of q.
Furthermore, when the functional dependencies S′ → P ′ and S′ → Y ′ hold in the
mediated schema, the joint view v1,2 is equivalent to the join of v1 and v2 because the

1 These are simplified MCDs in which the head homomorphisms on the views are omitted,
where each homomorphism simply maps a view variable to itself
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join is a lossless-join decomposition of v1,2. The join of v1 and v2 can then be used to
rewrite v1,2 in the rewriting to get q′.

In Example 2, we have the query:
q(D) : −taught(P, D), program(P, C), C = cs401.

The MiniCon algorithm again fails to generate the following rewriting:
q′(D) : −v1(S, D), v2(S, P ), v3(P, C), C = cs401.

First of all, we can have a partial mapping so that the taught subgoal in q is covered
by the taught subgoal in v1 and the only distinguished variable in the query subgoal
can be mapped to a distinguished variable in v1. So Clause C1 of Property 1 is satisfied.
However, the existential variable P in the taught subgoal in q is in the join predicate
with the program subgoal in q. But the join predicate has not been enforced in v1, and
the P variable in v1, which the P variable in q is mapped to, is not a distinguished
variable in v1 either. So Clause C2 of Property 1 is violated. No MCD for q over v1, can
be used in a non-redundant rewriting of q.

Again we can use the joint view v1,2 of v1 and v2, in which the P variable is a
distinguished variable. We can therefore have an MCD for q over v1,2 covering the
taught subgoal in q, which satisfies both Clause C1 and C2 of Property 1 and can be
used in a non-redundant rewriting of q. It is easy to see that another MCD for q over v3

covering the program subgoal in q can also be used in a non-redundant rewriting of q.
The rewriting q′ of q can be generated by first combining both MCDs for q over v1,2

and v3 respectively. Furthermore, the joint view v1,2 is equivalent to the join of v1 and
v2 only when functional dependencies S′ → P ′, P ′ → D′ and S′ → D′ hold in the
mediated schema. Note that the third functional dependency is a transitive functional
dependency which can be derived from the first two functional dependencies. So the
join of v1 and v2 can be used to rewrite v1,2 in the generated rewriting to get q′.

In the above examples, what we have revealed is the following. Though we can have
a partial mapping so that a subgoal in a query q can be covered by a subgoal in a view v1,
no MCD for q over v1 can be used in a non-redundant rewriting of q because one of the
clauses of Property 1 is violated. However, in the presence of functional dependencies
in the mediated schema, it may be possible to create a joint view v1,2 of v1 and another
view v2, over which no MCD for q can be used in a non-redundant rewriting of q either,
so that (1) the MCD for q over v1,2 satisfies both clauses of Property 1 and therefore
can be used in a non-redundant rewriting of q; (2) the joint view v1,2 is equivalent to
the join of v1 and v2, which can then be used to rewrite v1,2.

In Section 4.1, we describe how to form an MCD for a query Q over a joint view,
which can be used in a non-redundant rewriting of Q. In Section 4.2, we describe how to
combine MCDs over either single or joint views to generate the conjunctive rewritings
of a query. Our extension of the MiniCon algorithm retains the main properties of the
MiniCon algorithm and its computational advantage over the other algorithms.

4.1 Forming MCDs over Joint Views

We first formally define the joint view.

Definition 7. Given a set of views v1(X1), v2(X2), ..., and vn(Xn), their joint view,
v1,2,...,n(X), is formed by having all the distinguished variables in the given views as
its distinguished variables and all the subgoals in the given views as its subgoals.



Answering Queries Using Views in the Presence of Functional Dependencies 77

When forming the joint view from the given views, we make sure that the subgoals
in different views with the same predicate are unified to get a single subgoal. As a result,
some variables in different views may be mapped to a representative variable in the joint
view, where we choose a distinguished variable as the representative variable whenever
possible. In Examples 1 and 2, we have the following two views:

v1(S′, Y ′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) : −student(S′, P ′, Y ′).

and we can form a joint view:
v1,2(S′, Y ′, D′, P ′) : −student(S′, P ′, Y ′), taught(P ′, D′).

Note that two student subgoals in v1 and v2 are unified to get a single student subgoal
in the joint view v1,2, in which the variables S′, Y ′, D′ and P ′ are all distinguished
variables. Proposition 1 below specifies the exact conditions that we need to consider
when we decide whether the join of a set of single views is equivalent to the joint view
of the corresponding views.

Proposition 1. Let v1,2,...,n(X) be the joint view of views v1(X1), v2(X2), ..., and
vn(Xn). Given that there exists a set of variables X1, ..., Xm, where X1, ..., Xm ∈ X1,
X1, ..., Xm ∈ X2, ...., and X1, ..., Xm ∈ Xn, and for any other variable X ′, where
X ′ ∈ Xi for 1 ≤ i ≤ n, the functional dependency X1, ..., Xm → X ′ holds in vi(Xi),
then v1,2,...,n(X) is equivalent to the join of v1(X1), v2(X2), ..., and vn(Xn), that is,
v1,2,...,n(X) ≡ v1(X1), v2(X2), ..., vn(Xn).

It is straightforward that in the presence of the corresponding functional dependen-
cies, the join of v1(X1), v2(X2), ..., and vn(Xn) is a lossless-join decomposition of the
joint view v1,2,...,n(X). So we have the equivalence v1,2,...,n(X) ≡ v1(X1), v2(X2),
..., vn(Xn).

In Examples 1 and 2, as functional dependencies S′ → Y ′, S′ → D′, and S′ → P ′

hold in the mediated schema, we have the following equivalence:
v1,2(S′, Y ′, D′, P ′) ≡ v1(S′, Y ′, D′), v2(S′, P ′).

Property 3 below specifies the exact conditions that we need to consider when we decide
which views can be used to form a joint view over which an MCD for a query q can be
used in a non-redundant rewriting of q.

Property 3. Let F be a set of functional dependencies in the mediated schema, q be a
query, v1(X1) be a view containing a subgoal that a subgoal in q can be mapped to but
no MCD for q over v1 satisfies both Clause C1 and C2 of Property 1 hence can be used
in a non-redundant rewriting of q; Let v2(X2), ..., and vn(Xn) be some other views
over each of which no MCD for q can be used in a non-redundant rewriting of q, and
v1,2,...,n(X) be a joint view of v1(X1), v2(X2), ..., and vn(Xn); Let C1,2,...n be an
MCD for q over v1,2,...,n(X). C1,2,...,n can only be used in a non-redundant rewriting
of q if the following conditions hold:

C1: For each distinguished variable X of q which is in the domain of ϕC1,2,...,n ,
ϕC1,2,...,n(X) is a distinguished variable in hC1,2,...,n(v1,2,...n).

C2: If ϕC1,2,...,n(X) is an existential variable in hC1,2,...,n(v1,2,...,n), then for every
g, subgoal of q, that includes X , the following conditions must be satisfied: (1) all
the variables in g are in the domain of ϕC1,2,...,n , and (2) ϕC1,2,...,n(g) ∈ hC1,2,...,n

(v1,2,...,n).
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C3: v1,2,...,n(X) ≡ v1(X1), v2(X2), ..., vn(Xn) holds in the presence of functional
dependencies F .

Clause C1 guarantees that for each distinguished variable X of q, which is in the
domain of ϕC1,2,...,n , ϕC1,2,...,n(X) is a distinguished variable in hC1,2,...,n(v1,2,...,n).
Clause C2 guarantees that if a variable X of q is part of a join predicate which is not
enforced by the joint view v1,2,...,n, then X must be a distinguished variable of v1,2,...,n

so the join predicate can be applied in the rewriting. C3 guarantees that v1,2,...,n is
equivalent to the join of v1(X1), v2(X2), ..., vn(Xn) that can then be used to rewrite
v1,2,...,n. The extended MiniCon algorithm enforces the conditions in Property 3 to
generate only those MCDs that satisfy these conditions and all the MCDs generated are
used to form conjunctive rewritings.

In Example 1, we have the query: q(S, P, Y ) : −student(S, P, Y ). and two views
v1 and v2:

v1(S′, Y ′, D′) : −student(S′, P ′, Y ′), taught(P ′, D′).
v2(S′, P ′) : −student(S′, P ′, Y ′).

each of which has a subgoal that the student subgoal in q can be mapped to. But
neither of v1 and v2 actually satisfies Clause C1 of Property 1. However, we can have
the following joint view:

v1,2(S′, Y ′, D′, P ′) : −student(S′, P ′, Y ′), taught(P ′, D′).
and a mapping from q to v1,2:

ϕC1,2 = {S → S′, P → P ′, Y → Y ′}
It is easy to see that every distinguished variable in q has been mapped to a distinguished
variable in v1,2. So Clause C1 of Property 3 is satisfied. Clause C2 does not apply.
We also have functional dependencies: S′ → Y ′, S′ → D′, and S′ → P ′ in the
mediated schema. So v1,2 is equivalent to the join of v1 and v2 and Clause C3 is also
satisfied. Now an MCD for q over v1,2 can be used in a non-redundant rewriting of q.
Furthermore, the join of v1 and v2 can be used to rewrite v1,2. Therefore, we can have
the following rewriting:

q′(S′, P ′, Y ′) : −v1(S′, Y ′, D′), v2(S′, P ′).
In Example 2, we have the query: q(D) :- taught(P, D), program(P, C), C = cs401.
and the view v1 that covers the taught subgoal in q but does not satisfy Clause C2 of
Property 1: v1(S′, Y ′, D′) :- student(S′, P ′, Y ′), taught(P ′, D′). Again we can have
the joint view v1,2 v1,2(S′, Y ′, D′, P ′) :- student(S′, P ′, Y ′), taught(P ′, D′). and a
mapping from q to v1,2: ϕC1,2 = {P → P ′, D → D′}

Now the variable P ′ in v1,2 is a distinguished view variable. So Clause C2 of Prop-
erty 3 is satisfied. In the presence of functional dependencies S′ → Y ′, S′ → D′ and
S′ → P ′ in the mediated schema, Clause C3 of Property 3 is also satisfied. It is easy
to see that another view v3 covers the program subgoal in q and can also be used in a
non-redundant rewriting of q. Therefore we have the following rewriting:
q′(D′) :- v1(S′, Y ′, D′), v2(S′, P ′), v3(P ′, C′), C′ = cs401.

Given a subgoal in the query, the extended MiniCon algorithm first finds every view
containing a subgoal that the query subgoal can be mapped to and checks whether the
view satisfies Property 1. If so an MCD for the query over the view is created, which
can then be used in a non-redundant rewriting of the query. In this phrase, the extended
MiniCon algorithm is the same as the MiniCon algorithm. Otherwise, if a view can be
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found which contains a subgoal that the query subgoal can be mapped to but the view
does not satisfy either Clause C1 or C2 of Property 1, the algorithm finds other views
to form, together with the given view, a joint view that satisfies Property 3. Clause C1
and C2 of Property 3 are the same as Clause C1 and C2 of Property 1 while Clause
C3 of Property 3 further ensures that the joint view is equivalent to the join of the
corresponding views.

When finding other views, together with the given view, to form a joint view, atten-
tion is paid to those views that can help to satisfy either Clause C1 or C2 of Property 1
which the given view failed to satisfy. We then also make sure that the joint view that
consists of the selected views and the given view satisfies Clause C3 of Property 3. A
joint view formed this way can therefore satisfy Property 3 and an MCD for the query
over the joint view can be created, which can then be used in a non-redundant rewriting
of the query. The joint view is added to the set of existing views.

4.2 Combining MCDs over Either Single or Joint Views

In the secodn phrase, the extended MiniCon algorithm finds valid combinations of
MCDs formed in the first phrase and creates conjunctive rewritings of the query. The
maximally-contained rewriting of the query is a union of conjunctive rewritings.

Property 4 specifies the exact conditions a combination of MCDs must satisfy so
that it can be used to create a conjunctive rewriting of the query. The extended Mini-
Con algorithm enforces the conditions in Property 4 to combine only those MCDs that
satisfy these conditions.

Property 4. Given a query q, a set of views V , a set of functional dependencies F in
the mediated schema, and the set of MCDs C formed by the first phase of the extended
algorithm for q over V ′ that may also contain joint views apart from the single views in
V in the presence of F , the only combinations of MCDs that can result in non-redundant
rewriting of q are of the form C1,...,Cl, where

D1. GC1 ∪ ... ∪ GCl
= Subgoals(q), and

D2. for every i 
= j, GCi ∩ GCj = ∅.

For creating the rewriting q′, the extended MiniCon algorithm works the exactly
the same as the second phase of the MiniCon algorithm, simply treating joint views as
single views. In the last step of the extended MiniCon algorithm, it however needs to
replace every joint view in q′ with its correct rewriting.

Theorem 1 states the properties of the extended MiniCon algorithm.

Theorem 1. Given a conjunctive query q and a set of conjunctive views V , in the pres-
ence of functional dependencies F in the mediated schema, the extended MiniCon al-
gorithm is sound in the sense that every conjunctive rewriting q′ that is generated by the
algorithm is contained in q. In terms of completeness, the algorithm can generate the
union of conjunctive rewritings that is a maximally-contained rewriting of q using V in
the presence of F only if there exists such a maximally-contained rewriting. Sometimes,
such a maximally-contained rewriting may not exist and recursive rewritings may be
necessary in order to obtain a maximally-contained rewriting.
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The proofs of Properties 3 and 4 follow the correctness proof of the extended Mini-
Con algorithm. In terms of computational complexity of the extended MiniCon algo-
rithm, creating extra joint views does not involve a significant increase of computa-
tional complexity compared to the MiniCon algorithm. Even in the worst case, in the
first phase, the running time of the extended MiniCon algorithm is only roughly a num-
ber of times of the running time of the MiniCon algorithm. In the second phase, the
running time of the extended MiniCon algorithm is virtually the same as that of the
MiniCon algorithm. The correctness proof and complexity analysis of the extended
MiniCon algorithm are omitted in this paper due to space limitation. For details, refer
to the extended version of the paper.

5 Related Work

The problem of answering queries using views has relevance to a wide variety of data
management problems [6]. In the context of data integration, a number of algorithms,
such as the bucket algorithm [1], the inverse-rules algorithm [7, 8] and the MiniCon al-
gorithm [5], have been developed for the problem of reformulating conjunctive queries
using conjunctive views. However, these algorithms have not taken into account the
presence of functional dependencies in the mediated schema. As a consequence, these
algorithms may miss query rewritings in the presence of these integrity constraints.

Some algorithms have recently been developed for answering queries using views
in the presence of functional dependencies [9–11]. These algorithms can in general be
viewed as the extensions of the inverse-rules algorithm, and they inherit the perfor-
mance costs of the inverse-rules algorithm. In [5], it has been proven that the inverse-
rules algorithm does not scale up and is significantly outperformed by the scalable Mini-
Con algorithm. In this paper, we have presented an extension of the MiniCon algorithm
to handle the presence of functional dependencies while retaining the main properties
of the MiniCon algorithm and its significantly lower performance costs.

In addition to these algorithms, algorithms have been developed for conjunctive
queries with comparison predicates [12, 13], recursive queries [10], queries over dis-
junctive views [14], queries over conjunctive views with negation [15], queries and
views with grouping and aggregation [16, 17], queries over semi-structured data [18,
19], and OQL queries [20]. Duschka et al. [10] showed that in the presence of functional
and full dependencies there does not always exist a non-recursive maximally-contained
query rewriting. An algorithm [10] has been developed that deals with limitations on
data sources, which are described by a set of allowed binding patterns. In this case it is
known that recursive query rewritings may be necessary [3]. The algorithm constructs
a recursive maximally-contained query rewriting.

6 Conclusions

In this paper, we have considered the problem of answering queries using views in the
presence of functional dependencies. We have presented an extension of the MiniCon
algorithm to deal with the functional dependencies in the mediated schema. The under-
lying idea is that in the presence of functional dependencies, some views can be joined
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with other views to form joint views for which the corresponding MCDs can be used in
the non-redundant rewritings of the query, thus avoiding the problem of missing queries
in the presence of functional dependencies that the previous algorithms may have. Our
extension of the MiniCon algorithm retains the main properties of the algorithm. The
extension does not involve any significant increase in performance costs and retains the
computational competitiveness of the MiniCon algorithm over the other algorithms.

In future work, we will further explore the possibilities of extending the MiniCon
algorithm to deal with other types of integrity constraints in the mediated schema, such
as inclusion dependencies and domain dependencies.
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Abstract. Recently, more and more data are published and exchanged
by XML on the Internet. However, different XML data sources might
contain the same data but have different structures. Therefore, it re-
quires an efficient method to integrate such XML data sources so that
more complete and useful information can be conveniently accessed and
acquired by users.
The tree edit distance is regarded as an effective metric for evaluating
the structural similarity in XML documents. However, its computational
cost is extremely expensive and the traditional wisdom in join algorithms
cannot be applied easily. In this paper, we propose LAX (Leaf-clustering
based Approximate XML join algorithm), in which the two XML docu-
ment trees are clustered into subtrees representing independent items and
the similarity between them is determined by calculating the similarity
degree based on the leaf nodes of each pair of subtrees. We also propose
an effective algorithm for clustering the XML document for LAX. We
show that it is easily to apply the traditional wisdom in join algorithms
to LAX and the join result contains complete information of the two
documents. We then do experiments to compare LAX with the tree edit
distance and evaluate its performance using both synthetic and real data
sets. Our experimental results show that LAX is more efficient in per-
formance and more effective for measuring the approximate similarity
between XML documents than the tree edit distance.

1 Introduction

The eXtensible Markup Language (XML) is increasingly recognized as the de
facto standard for representing and exchanging data on the Internet, because
it can represent different kinds of data from multiple sources. Recently, more
and more data, especially bioinformatics and bibliography data such as MAGE
[12], DBLP [19] and ACM SIGMOD Record [1], are published by XML on the
Internet. However, the same data might have different structures and contents
in different XML data sources. Thus, it is paramount to integrate such data
sources so that users can conveniently access and acquire more complete and

M. Jackson et al. (Eds.): BNCOD 2005, LNCS 3567, pp. 82–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



LAX : An Efficient Approximate XML Join Based on Clustered Leaf Nodes 83

useful information. However, the integration of XML data from multiple sources
is not an easy task, because XML documents from different sources might have
different structures even though they represent the same information.

The Document Type Descriptor (DTD) is regarded as a useful tool to obtain
the structural information from XML documents [2, 7]. However, even if XML
data sources have the same DTDs, they may not have identical tree structures
due to the repeating and optional elements and attributes [8, 9, 14]. Therefore,
an effective approximate XML join algorithm, which is able to measure the
similarity between XML documents without considering DTDs, becomes of great
importance to solve the problem of integrating multiple XML data sources.
Example 1. Fig. 1 shows an example of two XML documents with different
DTDs1. Although these two documents are structurally different, they repre-
sent the similar data. Moreover, in terms of the related data items of the two
documents (i.e. “article” here in this example), one document may have some in-
formation what the other does not have. For instance, pages in (a); and volume
in (b).

The tree edit distance is currently verified as an effective metric for measuring
the structural similarity in XML documents [8, 14]. However, the computational
cost of the tree edit distance is extremely high. Besides, the traditional wisdom
in join algorithms (sort merge, hash joins etc) is of difficulty to be applied to
this area [8].

The main contributions of this paper are as follows:

– Computing tree edit distance between two XML documents is a very expen-
sive operation. To solve this problem, we propose an efficient join algorithm
LAX (Leaf-clustering based Approximate XML join algorithm), in which
the two XML document trees are clustered into subtrees representing inde-
pendent items and the similarity between them is determined by calculating
the similarity degree based on the leaf nodes of each pair of subtrees. We
also present an algorithm for effectively clustering the XML document into
independent items for LAX.

Bibliography

article article

title author title author pages

XML John XML
Joins

13-24Alice

pages

1-12

book

title

XML DB

author author

John Bob

... ...

(a)

PaperRecord

article article

authors title authorstitle

 XML     XML
    Joins

author author author

John Jane John

author

Alice

volume volume

1110

articles

... ...

(b)

Fig. 1. Example XML document trees

1 Associating to our interested real bibliography XML data, we make the DTD in
Fig. 1(a) similar to that of DBLP, and the DTD in Fig. 1(b) similar to that of ACM
SIGMOD Record
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– The traditional wisdom in join algorithms can be easily applied to LAX,
because the join operation of LAX is the same as traditional joins in RDBs.
Besides, the integration of the hit subtrees can make the join results contain
complete information from the two XML documents been joined.

– We do experiments to evaluate LAX using both synthetic and real data sets,
investigating how the number of leaf nodes and the number of clustered sub-
trees affect the performance of LAX. We also do experiments to compare
LAX with the tree edit distance. The experimental results show that our
algorithm is more efficient in performance and more effecitive for measur-
ing the approximate similarity between XML documents than the tree edit
distance.

The rest of this paper is arranged as follows: Section 2 briefly introduces
the work related to the issues addressed in this paper. In Section 3, we briefly
introduce the tree edit distance, and we provide basic definitions necessary for the
proposed algorithm and state the problem considered in this paper. In Section 4,
we propose and discuss LAX. In Section 5, we compare LAX with the tree edit
distance evaluate its performance by experiments. In the end, Section 6 concludes
the paper and outlines the future work.

2 Related Work

An XML document can be modeled as an ordered labeled tree [18]. Each element
in the XML document corresponds to a node in the ordered labeled tree labeled
with the element tag name. A lot of work has been done to solve the problem of
measuring the edit distance between such trees [3, 4, 13, 16, 17, 21, 22]. A general
definition of the distance between ordered labeled trees is presented by using the
tree edit distance that is defined as the minimum cost edit operations (insertions,
deletions and substitutions) required to transform one tree to another [22]. The
tree edit distance is considered to be an effective metric for calculating the
structural similarity in XML documents [8, 14]. However, the tree edit distance
is a very expensive operation and the traditional wisdom in join algorithms (sort
merge, hash joins etc) is not easy to be extended to this application field [8].

To avoid the expensive tree edit distance operation as much as possible, S.
Guha, et al. [8] developed lower and upper bounds as inexpensive filters for the
tree edit distance operation. However, when the upper bound is greater than the
threshold distance τ and, at the same time, the lower bound is less than τ , the
expensive tree edit distance still must be calculated.

Besides, XML and its schema languages do not provide any semantic infor-
mation. A number of work related to XML schema matching and integration has
been studied by many researchers [5, 6, 11, 15, 20]. Generally, schema match-
ing is an important and difficult problem for many database applications such
as schema integration, data warehousing, and E-business [15]. From the XML
data integration point of view, the problem of semantic heterogeneities is still a
pervasive and paramount issue. However, many real XML documents contain re-
peating elements, articlesTuple in SigmodRecord.xml [1] for example. Taking
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such XML documents as the target, the approximate similarity degree between
them can be effectively determined by computing the similarity degree of clus-
tered subtrees (rooted at the repeating elements) even without considering the
semantic heterogeneity. In Section 4, we will mention this problem associated
with our algorithm.

3 Preliminaries

3.1 Tree Edit Distance

A well formed XML document can be parsed into an ordered labeled tree, in
which the tree structure represents nesting of the elements and node labels
records the contents of the elements by element tags, attribute names, attribute
values and PCDATA values.

Definition 1 (XML Document Tree). An XML document tree T is an or-
dered labeled tree parsed from an XML document.

Let T1 and T2 be two XML document trees, the tree edit distance between
them is defined as follows:

Definition 2 (Tree Edit Distance). Given two XML document trees T1 and
T2, the tree edit distance, TEDist(T1,T2), is defined as the minimum cost edit
operations (insertions, deletions and substitutions) that transforms one tree to
the other.

Assume each node label is a symbol chosen from an alphabet Σ of size |Σ|.
Let λ 
∈ Σ denote the null symbol. An edit operation can be represented as
γ(a → b). γ(a → b) is an insert operation if a = λ, a delete operation if b = λ,
and a substitute operation if a 
= λ and b 
= λ.

The tree edit distance TEDist(T1, T2) can be figured out by a mapping M
between the nodes of the two trees. Formal description of the mapping and
algorithms for computing the tree edit distance are available in [22].

Given an XML document tree T , let d(T ) denote its depth. For two document
trees Tb and Tt, and let tb and tt be any pair of subtree. Then the time complexity
of the computation of the tree edit distance can be bounded by the following
equation [22]:

O(
|T1|∑
i=1

|T2|∑
j=1

|t1i|×|t2j |) = O(
|T1|∑
i=1

|t1i|×
|T2|∑
j=1

|t2j |) = O(|T1|×|T2|×d(T1)×d(T2)) (1)

For document trees of size O(n), in the worst case, it is an O(n4) operation.

3.2 Basic Definitions for LAX

Notation. Let Tb and Tt be two XML document trees, where b denotes base,
and t denotes target. Assume Tb and Tt are clustered into kb and kt sub-trees
tbi(1 ≤ i ≤ kb) and ttj(1 ≤ j ≤ kt), as shown in Fig. 2, respectively.
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Fig. 2. Example clustering of XML doc-
ument trees
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Fig. 3. Example of a well-clustered XML
document

Definition 3 (Subtree Similarity Degree). For each pair of subtrees tbi and
ttj, let tbi be the base subtree, and ttj be the target one. Let nbi and ntj represent
the number of leaf nodes of tbi and ttj. If there are n pairs of leaf nodes of the two
subtrees having the same PCDATA values, then the similarity degree of subtrees
tbi and ttj, S(tbi, ttj) is defined as follows:

S(tbi, ttj) =
n

nbi
× 100 (%) (2)

Definition 4 (Matched Subtree). In each join loop i, for the base subtree tbi

and each target subtree ttj (1 ≤ j ≤ kt), the subtree similarity degree S(tbi, ttj) is
computed one by one. The matched subtree TMi is defined as the pair of subtrees
tbi and ttj that has the maximum subtree similarity degree in that join loop.

Definition 5 (Tree Similarity Degree). Let the base document tree Tb that
has the less number of subtrees be the outer loop and the target one Tt be the
inner loop. In each join loop i, let the similarity degree of each matched subtree
be recorded into an array SM [i]. The tree similarity degree S(Tb, Tt) is defined
as follows:

S(Tb, Tt) =
∑kb

i=1 SM [i]
kb

× 100 (%) (3)

3.3 Problem Statement

Let Sb and St be two XML data sources. We are pursuing an algorithm to execute
join operations, based on the leaf nodes of each pair of clustered subtrees of the
XML documents, using similarity degree as a join predicate. The main problem
addressed in this paper is formally defined as follows:

Problem 1 (Leaf-clustering based Approximate XML Joins). Given two XML
data sources, Sb and St, a user defined threshold τ , and the tree similarity degree
S(Tb, Tt) accessing the distance between pairs of XML documents trees Tb and
Tt parsed from two documents db ∈ Sb and dt ∈ St. The leaf-clustering based
approximate join operation outputs all pairs of documents (db, dt) ∈ Sb × St,
such that S(Tb, Tt) ≥ τ .
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In the tree edit distance, for any two XML documents with different DTDs
that have the same number of nodes, the tree edit distances of them do not
change a lot when the PCDATA values of the leaf nodes change. However, in
LAX, the change of the values of the leaf nodes might change the values of the
tree similarity degrees in a large scale. Therefore, pairs of XML documents that
have the same tree edit distance might have different tree similarity degrees.
Besides, because in LAX the XML document is clustered into subtrees repre-
senting independent items, the matched subtrees that have large enough subtree
similarity degrees still can be integrated even though the tree edit distance of
the two whole documents exceeds the threshold.

4 LAX

4.1 Clustering

An XML document can be generally divided into many independent items by
clustering it into subtrees at some specific element nodes. However, it is not
easy to cluster an XML document tree into subtrees representing independent
items. As a matter of fact, a well-clustered document requires that each clustered
subtree meets the following conditions.

1. Each subtree represents only one independent item; that is, a subtree does
not include any information of other items.

2. One independent item is clustered into one subtree; that is, one item does
not have more than one corresponding subtrees.

3. Each subtree includes the information of an item as much as possible. In
other words, the leaf nodes belonging to that item should be included in the
subtree as much as possible.

Example 2. Fig. 3 shows an example of a well-clustered document. The docu-
ment tree is clustered into two subtrees at the element nodes article so that
each subtree represents complete information of an independent article.

In order to include more information of an independent item, an element is
not supposed to be selected as the spot for clustering, if 1) it has only one child,
and 2) the distance to its furthest child is less than 3. Before we treat of the
algorithm for clustering XML document trees, we give the following definitions.

Definition 6 (Candidate Element). An element is a candidate element, if it
has at least 2 children, or the distance to its furthest child is at least 3.

Definition 7 (Link Branch). A branch between two candidate elements is a
link branch.

Definition 8 (Top-down Path). A top-down path is defined as a path from
the top candidate element to the bottom one via link branches.
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Algorithm ClusterXMLDoc(T) {
Input: XML document tree T
Output: Clustering spots for T
Let N be the number of top-down paths, and M [i] be the
number of candidate elements in the i-th path.

for (i = 1 to N) {
ClusteringSpot[i] = null;
wmax[i] = 0;
for (j = 1 to M [i]) {

w=n[j] × d[j]φ;
if ( wmax[i] < w) {

wmax[i] = w;
ClusteringSpot[i] = E(n[j], d[j]);

}
}
return CluteringSpot[i];

}
}

Fig. 4. Algorithm ClusterXMLDoc

Only one candidate element should be selected as the place for clustering
in one top-down path. Generally, we consider a candidate element as a proper
spot for clustering, if it has more link branches (i.e. there are more candidate
elements among its children), and it is at higher level of the document tree (i.e.
it is far from its furthest child). To effectively find the most appropriate spot for
clustering, we define the weighting factor for evaluating each candidate element
in a top-down path as follows.

Definition 9 (Weighting Factor). For a candidate element E(n, d), let n
denote the number of link branches below it, and d denote the distance to its
furthest child. The weighting factor w is defined as follows:

w = n × dφ (0 < φ ≤ 1) (4)

where φ is an adjustable constant2.

Then we define the clustering spot that indicates the place for clustering
using the weighting factor w as follows.

Definition 10 (Clustering Spot). In each top-down path of an XML docu-
ment tree T , the clustering spot, indicating the place for clustering, is the can-
didate element E(n, d) that has the maximum w in that top-down path. If two
or more candidate elements have the same value of w in the same path, the one
who has the maximum d is chosen as the clustering spot.
2 For the sake of simplicity, we set φ = 1 for the examples in this paper. In fact, doc-

uments from different sources may require different φ to achieve better clusterings.
In the real application, φ can be dynamically optimized by experiments
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Fig. 6. Example of calculating subtree
similarity degrees

In a top-down path, the subtree can be simply generated by deleting the
link branch below the clustering spot; that is, the root of the subtree is the
child element of the clustering spot in that top-down path. The algorithm for
determining the clustering spots for an XML document tree is shown in Fig. 4 .

Example 3. Fig. 5 shows a simple example of clustering an XML document tree
by Algorithm ClusterXMLDoc. There are two top-down paths in the document
tree. In the left path, {PaperRecord(1,5), articles(2,4), article(1,3),
authors(0,2)}, the clustering spot is the candidate element articles(2,4)
because of the maximum w = 2 × 4 = 8. Similarly, the clustering spot in the
right path is the same element, articles(2,4). Therefore, the document tree
can be clustered into the two circled subtrees shown in Fig. 5.

4.2 Join Algorithm

Let Sb and St be two XML data sources, and each db ∈ Sb and dt ∈ St be parsed
into XML document trees Tb and Tt. Assume Tb and Tt are clustered into kb and
kt subtrees tbi and ttj by using Algorithm ClusterXMLDoc. Given a user-defined
threshold τ , the Leaf-clustering based Approximate XML join algorithm (LAX )
is illustrated by Fig. 7.

Example 4. Fig. 6 shows the join process by LAX for the two XML documents
trees Tb and Tt in Fig. 2. Let Tb be the outer loop and Tt be the inner loop
for the join operation. In the first join loop shown in Fig. 6 (a), the similarity
degrees of each pair of subtrees can be calculated as follows:

s(tb1, tt1) =
1
3
× 100% = 33.3%

s(tb1, tt2) =
3
3
× 100% = 100%

Then the similarity of the matched subtree,
SM [1] = Max{S(tb1, tt1), S(tb1, tt2)} = 100%. In the same way, we have SM [2] =
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Algorithm LAX {
Input: XML data source Sb and St

Output: Pairs of XML documents (db, dt)
for each db ∈ Sb {

Parse db into Tb;
ClusterXMLDoc(Tb);
for each dt ∈ St {

Parse dt into Tt;
ClusterXMLDoc(Tt);
Sum = 0;
for (i = 1 to kb) {

SM [i] = 0;
for (j = 1 to kt) {

Calculate S(tbi, ttj);
SM [i] = Max(SM [i], S(tbi, ttj));

}
Sum = Sum + SM [i];

}
if(Sum/kb ≥ τ ) {

return (db, dt);
}

}
}

}

Fig. 7. Algorithm LAX

66.7% for the second join loop. Finally, the tree similarity degree S(Tb, Tt) can
be calculated by equation (3), i.e., S(Tb, Tt) = SM [1]+SM [2]

2 × 100% = 1+0.667
2 ×

100% = 83.4%. If S(Tb, Tt) ≥ τ , the two documents should be output as the
final result.

4.3 Discussion

Cost. Let two XML document trees Tb and Tt be clustered into kb and kt sub-
trees, respectively. For i = 1 to kb, assume each subtree tbi has αi leaf nodes, and
for j = 1 to kt, each subtree ttj has βj leaf nodes. Then the total computational
cost of LAX can be figured out by the following equation:

C =
kb∑

i=1

kt∑
j=1

αi × βj (5)

If the sizes of the two XML document trees are both O(n), in the worst case,
LAX is an O(n2) operation.

Traditional Wisdom in Join Algorithms. The traditional wisdom in join
algorithm can be easily applied to LAX, because the join operations based on the
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Fig. 8. Example of an output of LAX

clustered leaf nodes in LAX are just the same as the traditional joins in an RDB.
Therefore, LAX may achieve more efficiency by using traditional techniques for
join algorithms. For example, the total cost of LAX using hash joins can be
calculated as follows:

CHASH =
kb∑

i=1

kt∑
j=1

(Cgen(αi) + Chash(αi + βj) + Ccomp(βj)) (6)

where, Cgen represents the cost of making entries for subtree tbi; Chash stands
for the cost of using the hash function to the two subtrees; and Ccomp means the
cost of comparisons in the probe phase.

Output of LAX

Definition 11 (Hit Subtree). In the ith join loop, let the similarity degree of
the matched subtree TMi be SM [i]. Given a threshold T (0 < T ≤1), the matched
subtree is a hit subtree, if SM [i] ≥ T .

Given two XML document trees T1 and T2, if the tree similarity degree of T1

and T2, S(T1, T2) ≥ τ , the two XML document trees can be integrated at each
hit subtrees. Fig. 8 shows an example of the output XML document from joining
the two XML documents in Fig. 1 using LAX, in which the whole information
of the articles from the two documents been joined is included. Thus, users can
conveniently acquire more complete and useful information of the articles by
accessing the output document.

Issues to be Considered. In our algorithm, we just compare the PCDATA
values of the leaf nodes without considering their semantic similarities. The more
precise join can be achieved by using techniques of semantic matching. Another
issue is that in case the similarity degrees of one subtree in the outer loop and
several subtrees in the inner loop happen to be the same, how to choose the
right pair? In this case, one effective solution is to compare the common parents
of the leaf nodes to decide which subtree is the right one. However, there still
exists semantic problem when comparing the common parents.
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5 Experimental Evaluation

In this section, we conduct experiments to observe the efficiency and effective-
ness of our algorithm comparing with the tree edit distance. We also perform
experiments to investigate how the number of leaf nodes and the number of
clustered subtrees affect the performance of our algorithm.

5.1 Data Set Used

We used both real and synthetic data sets to perform our experiments. For a syn-
thetic data set, we used IBM XML generator available through AlphaWorks [10].
The XML generator can randomly generate XML documents by inputting DTDs.
In our experiments, we utilized SigmodRecord.dtd [1] to randomly generate XML
documents of different sizes by changing the two parameters: MaxLevels and
MaxRepeats. The size range of the generated XML documents was from 1 to 150
KB (about 0 to 5000 nodes).

For the real data set, we made use of the XML documents of OrdinaryIssue
Page, ProceedingsPage and SigmodRecord from the XML version of ACM SIG-
MOD record [1], and the XML document of the DBLP database [19].

5.2 Experimental Environment

Our experiments were done under the environment shown in Table 1.

Table 1. Experimental Environment

CPU Intel Pentium IV 2.80GHz

Memory 1.0 GB

OS MS Windows XP Professional

Programming
Environment Sun JDK 1.4.2

5.3 Comparing LAX with Tree Edit Distance

Efficiency. To evaluate the efficiency of our algorithm, we compared the time
to computer the tree similarity degree for a pair of XML documents by our
algorithm with that of tree edit distance using synthetic data sets. Because the
tree edit distance is extremely time-consuming, in this paper we only used the
pair of documents whose total number of nodes is less than 1200.

From Fig. 9, we observe that our algorithm is overwhelmingly faster com-
paring to the tree edit distance when the number of nodes is more than 500,
corresponding with our analytical expectations. Therefore, we can consider that
our algorithm is more efficient than the tree edit distance for measuring the
similarity between XML documents.
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Table 2. The number of nodes and clustered subtrees included in each fragment

sigmod.xml dblp1.xml dblp2.xml dblp3.xml dblp4.xml dblp5.xml dblp6.xml

No. of nodes 194 196 196 193 202 198 202

No. of subtrees 17 9 9 9 9 9 9

Effectiveness. In our algorithm, the similarity degree is defined as the quanti-
tative measurement for calculating the subtree similarity degree. The larger the
similarity degree is, the higher the probability of the subtrees being the same is,
even though the element nodes above the leaf nodes have different structures or
values.

To verify the effectiveness of our algorithm for determining the similarity
between XML documents, we calculated the tree similarity degrees using LAX
and compared them with the tree edit distances of the same pairs of XML docu-
ments. In our experiments, we utilized the real XML documents, DBLP.xml [19]
and SigmodRecord.xml [1]. Because the calculation of the tree edit distance is
extremely time-consuming, we divided the SigmodRecord.xml into small frag-
ments. Each fragment contains the entire articles of one issue. In the same way,
we divided the DBLP.xml into fragments contains almost the same number of
nodes as those of SigmodRecord.xml. Here we show the result of an example
using one fragment of SigmodRecord.xml3 and six fragments of DBLP.xml4. Ta-
ble 2 shows the number of nodes and clustered subtrees (each subtree contains
complete information of an article) included in each fragment. Table 3 shows the
results of the tree edit distance and tree similarity degree of each pair of frag-
ments. From the results, we can observe that the tree edit distance of each pair
of fragments is almost the same. However, the tree similarity degree increases
proportionally to the number of hit subtrees as shown in Fig. 10. That is to
say, our algorithm can effectively distinguish the similarity differences between
pairs of XML documents even they have the same tree edit distance. Table 4

3 Vol.20, No.3, SIGMOD Record 1991
4 To obtain different number of hit subtrees, in this paper we specially chose the

fragments that contain different number of articles from Vol.20, No.3, SIGMOD
Record 1991
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Table 3. Result of each pair of fragments

Tree edit distance Tree similarity degree No. of hit subtrees

sigmod.xml × dblp1.xml 216 0.149 4

sigmod.xml × dblp2.xml 216 0.120 3

sigmod.xml × dblp3.xml 210 0.067 2

sigmod.xml × dblp4.xml 219 0.011 0

sigmod.xml × dblp5.xml 216 0.220 8

sigmod.xml × dblp6.xml 220 0.169 6

Table 4. Result of the matched subtrees of sigmod.xml × dblp6.xml

TM [1] TM [2]∗ TM [3]∗ TM [4] TM [5]∗ TM [6]∗ TM [7]∗ TM [8] TM [9]∗

Nsigmod 25 21 21 23 23 21 23 23 21

Ndblp 12 10 10 12 12 10 12 14 10

SM 0.083 0.2 0.2 0.091 0.273 0.2 0.273 0.0 0.2

TEDist 24 20 20 22 22 20 22 23 20

shows the detailed results of each matched subtree of sigmod.xml × dblp6.xml,
where TM [i] denotes the matched subtree, ∗ indicates the hit subtree, Nsigmod

and Ndblp represent the number of nodes in each subtree of the matched subtree
of sigmod.xml and dblp6.xml, respectively, and SM and TEDist denote the sim-
ilarity degree and the edit distance of each matched subtree, respectively. From
the results, we can see that it is difficult for the tree edit distance to determine
the hit subtree. However, our algorithm can effectively determine the hit subtree
by setting an appropriate threshold T . Therefore, by integrating the hit subtrees,
the XML document that contains more complete information can be output.

5.4 Evaluating LAX

In our experiments, we took two XML documents from synthetic or real data
sets as the input for our algorithm. And then we investigated how the number of
leaf nodes and the number of clustered subtrees impacted the performance of our
algorithm. The time for computing the tree edit distance using synthetic data
sets are shown in Fig. 11. The X-axis in Fig. 11 (a) represents the total number
of leaf nodes of the two documents to be joined, and the X-axis in (b) denotes
the total number of clustered subtrees in the two documents. From Fig. 11, we
observe that the runtime of our algorithm increases almost proportionally to the
number of leaf nodes or the number of clustered subtrees, and the impacts on
the time to computer the tree similarity degree by the two factors are almost
the same. Fig. 11 also shows that for the total number of leaf nodes of the two
documents less than 5000 (document size less than 300KB) or the total number
of clustered subtrees less than 400, the computation of the tree similarity degree
can be accomplished within 2 seconds.

We also investigated how the number of clustered subtrees changed when the
document size increased. Fig. 12 indicates that the number of clustered subtrees
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Fig. 11. Time for computing the tree similarity degree using synthetic data sets
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generally increases, when the size of document becomes larger. However, the
number of clustered subtrees does not always increase monotonously, because
the clustered subtrees might contain different number of nodes due to different
DTDs.

The results using real XML data sets are shown in Fig. 13 and 14. The
runtime using real data sets increases faster than the one using synthetic data
does under the same scale number of leaf nodes. Because the length of the
PCDATA of real data is generally longer than that of synthetic data made by
the XML generator.
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6 Conclusions and Future Work

It becomes more important to measure the approximate similarity between XML
documents for integrating multiple XML data sources. Tree edit distance is cur-
rently recognized as a general metric for computing the structural similarity
between XML documents. However, its computational cost is too expensive.
Recognizing this problem, in this paper we have proposed LAX (Leaf-clustering
based Approximate XML join algorithm), in which the two XML document
trees are clustered into many subtrees representing independent items and the
approximate similarity between them are determined by calculating the similar-
ity degree based on the leaf nodes of each pair of subtrees. We have also proposed
an effective algorithm for clustering the XML document for LAX.

The proposed algorithm has the following advantages: 1) it is an inexpensive
and effective algorithm to determine the approximate similarity between XML
documents; 2) the traditional wisdom in join algorithms can be applied to it
without any difficulties; and 3) its output document contains complete informa-
tion of the two documents been joined.

We have done experiments to compare our algorithm with the tree edit dis-
tance and evaluate its performance using both synthetic and real data sets. Our
experimental results show that LAX, comparing with the tree edit distance, is
more efficient in performance and more effective for measuring the approximate
similarity between XML documents.

In our experiments, we just used XML data of small size generated by the
DOM Parser. In the future, we plan to do further experiments with the real
bioinformatics and large-scale knowledge-based XML data stored in RDBs.
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Abstract. Data warehouse (DW) views provide an efficient access to
information integrated from source data. As changes are made to the
source data, the corresponding views may be outdated. Hence, the main-
tenance of DW views is crucial for the currency of information. In this
paper, we propose a novel method to efficiently self-maintain DW views
that contain select-project-joins over relations modelled in a star schema.
Specifically, our method avoids computing the views from scratch, which
can be very costly. Instead, it exploits the referential integrity constraints
that are imposed on the relations. Therefore, with our proposed method,
DW views can be updated or refreshed by using only the old materialised
views and the files that keep the truly relevant tuples in the “delta”. The
method avoids accessing the underlying source data, and hence, achieves
efficient update of DW views that contain joins over relations modelled
in a star schema.

Keywords: Data warehousing, view maintenance, referential integrity
constraints, star schema, self-maintainability.

1 Introduction

A data warehouse (DW) is a subject-oriented, integrated, time-variant, and non-
volatile collection of data organised in such a way that it supports the decision
making process of the management. In general, DW views provide a fast access
to integrated source data. As changes can be made to the source data, the cor-
responding views may be outdated. Hence, the maintenance of views is crucial
for the currency of information. In other words, views need to be periodically
refreshed so as to reflect those updates that have been made to the source data.
In response to the changes to the source data, many existing DW views are
refreshed by recomputing the contents from scratch (i.e., computing the new
views from the updated source data), while some other DW views are incremen-
tally maintained by accessing the source data. However, these approaches can
be costly. Moreover, in many real-life situations, it is not uncommon that only
a tiny fraction of some huge source data gets changed. The above approaches
require an access to a huge amount of source data. Consequently, both CPU and
I/O costs of these approaches can be extremely high. A better approach is to
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incrementally maintain views without accessing the source data. This calls for
efficient view maintenance.

In this paper, our key contribution is the development of a novel method,
which exploits referential integrity constraints, for self-maintaining DW views.
With our method, the DW views can be self-maintained in the sense that the
new views can be formed by using only (i) the old materialised views and (ii) ref-
erential integrity constraints, i.e., without requiring an access to any underlying
databases. The method can be used in data warehousing environments to ef-
ficiently maintain views, and to effectively avoid concurrency control problems
faced by many generic view maintenance strategies [2, 7, 13, 17, 19]. Specifically,
we study the following problems:

1. How to efficiently update DW views containing a select-project-join (SPJ)
operation over two relations (e.g., a fact table and a dimension table)?

2. How to efficiently update DW views containing a SPJ over a fact table and
more than one dimension table?

3. How to efficiently update DW views containing a SPJ over a fact table and
multiple dimension tables modelled in a star schema?

More specifically, we keep all and only those tuples that are relevant to the main-
tenance of views in files called referential integrity differential files (RIDFs). By
using RIDFs and by exploiting properties of referential integrity constraints, our
developed method provides self-maintainability to DW views that are modelled
in a star schema. The method can be extended to self-maintain views that are
modelled in other schemas (e.g., snowflake schema, galaxy schema). To avoid
distraction, we focus on the star schema in this paper.

The outline of this paper is as follows. Section 2 gives related works and
background. Sections 3, 4, and 5 describe how we exploit referential integrity
constraints to self-maintain DW views involving joins over a fact table and n di-
mension tables (where n ≥ 1) that are modelled in a star schema. Section 6
discusses further reduction in size for RIDFs. Experimental results are given in
Section 7. Finally, conclusions are presented in Section 8.

2 Related Works and Background

Here, we first discuss the related works, and then present some background
materials relevant to the rest of this paper.

2.1 Related Works

Many view maintenance approaches have been proposed (e.g., [1–6, 8–17, 19])
over the past decade. In this section, let us discuss some relevant ones.

Self-maintainability of DW views is a notion that views can be maintained,
with respect to data warehouse objects, without requiring any accesses to any
underlying databases. This notion was initially proposed as a Boolean expression
with sufficient and necessary conditions on the view definition for autonomously
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computable updates [1]. To compute the updates, Blakeley et al. [1] applied a
special case of a counting algorithm to SPJ expressions (with no negations, ag-
gregations, or recursions). Several other researchers have developed algorithms
related to the integration and maintenance of information extracted from het-
erogeneous or autonomous sources [9, 19]. Most of their works focused mainly
on conventional database views, but not data warehouse views.

Over the past decade, several algebraic approaches for maintaining views
have been proposed [1, 5, 6, 9, 15, 16]. Qian and Wiederhold [15] presented an
algorithm for incremental view maintenance based on finite differencing tech-
niques. Their algorithm uses source data, and thus, it lacks the notion of self-
maintainability. Hyun [9] dealt with functional dependencies, while Gupta and
Mumick [8] integrated outer joins. However, most of these works did not fully ex-
ploit referential integrity constraints for the maintenance of views. In this paper,
we use – and extend – some notations from [5, 6, 11, 15] to present an efficient
method to self-maintain DW views based on referential integrity constraints.

With respect to the maintenance of views based on referential integrity, the
most relevant works include [10, 12, 14, 16], in which relevant tables are se-
lected to form auxiliary structures – such as auxiliary views [16], auxiliary rela-
tions [14], auxiliary data [10], or complements [12] – for self-maintaining a SPJ
view. Although the use of these auxiliary structures (e.g., auxiliary views) leads
to self-maintenance of DW views, the construction cost of these structures can
be quite high in some situations. Accesses of a large number of tuples may be
required to construct these structures. As a preview, we will show in Section 7
that our proposed self-maintenance method incurs a lower cost.

2.2 Background

A referential integrity constraint is one of the most fundamental constraints in
database and data warehousing environments. It can be specified between two
relations, and used to maintain consistency among tuples in the two relations.
Informally, the constraint states that a tuple r in a relation R (called the ref-
erencing relation) that refers to another relation S (called the referenced
relation) must refer to an existing tuple s in S. More formally, the foreign key
of R (denoted as R.fk) must “match” a candidate key of S (denoted as S.ck),
that is, they must have the same domain and R.fk = S.ck 1. Without loss of
generality, we assume in this paper that all relations in the data warehouse are
“linked” by referential integrity constraints.

Whenever there is a change to a relation in an underlying database, the
corresponding views need to be updated to reflect the change. This can be done
using either an immediate mode or a deferred mode. For the former, the views
are refreshed immediately; for the latter, all the changes are first recorded in
some differential files, and the views are then updated periodically using these

1 A candidate key of a relation is a minimal set of attributes whose values uniquely
identify each tuple in the relation. A foreign key is a set of attributes (in a referencing
relation R) that refers to a candidate key of the referenced relation S.
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differential files. Whenever a tuple is inserted into, or deleted from, a referencing
relation R or a referenced relation S, appropriate actions need to be taken as
described below. (i) When a tuple r is inserted into a referencing relation R,
a look-up in S is required to ensure the presence of a tuple s ∈ S where s.ck =
r.fk. If s is present, then r is inserted into R as well as the differential file ΔR 2;
otherwise, referential integrity is violated. It can be easily observed that the
insertion into R does not affect S. (ii) When a tuple r is deleted from a
referencing relation R, the tuple r is recorded in the differential file ∇R.
Such a deletion from R also does not affect S. (iii) When a tuple s is inserted
into a referenced relation S, the tuple s is recorded in the differential file ΔS.
Such an insertion into S does not affect R. (iv) When a tuple s is deleted from
a referenced relation S, a look-up in R is required (for the default mode
of “on delete no action”) to ensure the absence of a tuple r ∈ R satisfying
r.fk = s.ck. If r is absent, then s is safely removed from S; otherwise (i.e., r
exists in R), referential integrity is violated, and the deletion is rejected. Note
that there is no change in R.

3 Maintenance of Data Warehouse Views Involving
a Dimension Table

In this section, we discuss the situation where the view contains a join over a fact
table F and a dimension table D, where F references D. For example, F repre-
sents a sales relation (Sales) that contains sales information, and D represents
an item relation (Item) that contains item information as described below:

– Item (itemID, name, type, description), and
– Sales (invoiceID, itemID, price) where itemID references Item.

The view πname,priceσprice>100(Item �� Sales) finds the item name and the selling
price for each item whose price is over $100.

3.1 A Näıve Method: Recompute Views from Scratch

Consider a SPJ view πAσC(F �� D) where σC is the (usual) selection based on
a Boolean condition C and πA is the (usual) projection on a list of attributes A.
When the underlying relations (namely, F and D) of the view are updated, we
need to update the view in order to preserve consistency. A näıve method is to
ignore the old view πAσC(F �� D) and to compute the new view πAσC(F ′ �� D′)
from scratch, where F ′ and D′ are the updated F and D respectively. However,
this method can be very costly, especially when updates are made very frequently
or when only a tiny fraction of F or D is updated.

2 Since the views can be updated using the deferred mode, it is more precise to say
the following. An insertion of a tuple r into R requires a look-up in the “current”
referenced relation (S −∇S ∪ S). If there exists a tuple s ∈ (S −∇S ∪ S) such that
s.ck = r.fk, then r is inserted into R as well as ΔR.
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3.2 An Improved Method: Update Views by Using Old Views,
Differential Files, and Source Relations

A more efficient method is to obtain the new view from the old view, differential
files, and source relations. It is well-known that the updated referencing rela-
tion F ′ can be expressed in terms of the old relation F , its insertion ΔF , and
its deletion ∇F (i.e., F ′ = F − ∇F ∪ ΔF ). Similarly, the updated referenced
relation D′ can be expressed as D′ = D −∇D ∪ ΔD. Therefore, the new view
πAσC(F ′ �� D′) can be expressed in terms of the old view, differential files, and
source relations. In the following expression, let us focus on how to efficiently
update the join component because it dominates the SPJ operations (i.e., the
select, project, and join operations):

v′ = F ′ �� D′

= (F −∇F ∪ ΔF ) �� (D −∇D ∪ ΔD) (1)
= (F �� D) − (F �� ∇D) ∪ (F �� ΔD)

− (∇F �� D) − (∇F �� ∇D) − (∇F �� ΔD)
∪ (ΔF �� D) − (ΔF �� ∇D) ∪ (ΔF �� ΔD). (2)

Note that, among the 32 = 9 terms in Equation (2), the first term (F �� D) is the
old view. Hence, we do not need to compute the new view entirely from scratch;
we can compute the new view by combining the old view with the results from
the other eight terms. However, many of these eight terms, such as (ΔF �� D),
involve not only the differential files (e.g., ΔF ) but also the source relations
(e.g., D). Since source relations are required, this improved method still cannot
efficiently self-maintain DW views.

3.3 An Efficient Self-maintainable Method

Equation (2) can be simplified by exploiting the properties of referential integrity
constraints and the nature of the nine terms (e.g., by applying the propagation
rules [13]):

– The term (F �� D) represents the old view, as mentioned in Section 3.2.
– The term (F �� ΔD) gives an empty relation. Because of referential integrity

constraints, for all f ∈ F , there must exist d ∈ D such that f.fk = d.ck. In
other words, there does not exist a tuple d′ ∈ ΔD satisfying f.fk = d′.ck.

– All the terms involving ∇D (and similarly, all the terms involving ∇F ) can
be grouped together because they basically represent the action that all the
tuples containing d ∈ ∇D (and f ∈ ∇F ) can be deleted.

– The term (ΔF �� ΔD) involves only the two differential files ΔF and ΔD.
In other words, no access to the source data is required.

The computation of the only remaining term – namely (ΔF �� D) – requires an
access to the differential file ΔF and the source relation D. A natural question to
ask is whether one can compute this term without accessing any source relations
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such as D? If so, how to compute it? Recall from Section 2.2 that when a tuple f
is inserted into F , we check if there exists a tuple d ∈ D such that d.ck = f.fk.
If such d exists, the insertion is successful and f is then recorded in ΔF . Given
that the search and check has been performed, one can record the tuple d in a
file called referential integrity differential file (RIDF). By so doing, the
RIDF contains all those tuples (d) that are related to the tuples in ΔF . In other
words, the RIDF contains all and only those tuples that could be joined with
ΔF in the term (ΔF �� D). Therefore, with this RIDF, the term (ΔF �� D) can
be rewritten as (ΔF �� RIDF (D)), which no longer requires an access to the
source data. See the definition below.

Definition 1 (Referential integrity differential file (RIDF)). Let (i) a
SPJ view πAσC(F �� D) be created in terms of two relations F and D, and (ii) a
referential integrity constraint be imposed on F and D such that F.fk = D.ck
where F.fk denotes the foreign key of the referencing relation F and D.ck de-
notes a candidate key of the referenced relation D. Then, when a tuple r is
successfully inserted into F (i.e., f is put in ΔF ), a referential integrity dif-
ferential file RIDF (D) keeps all and only those tuples (in D) that are truly
relevant to the update of the view. Precisely, for each tuple f ∈ ΔF , its corre-
sponding d ∈ D (such that d.ck = f.fk) is kept in RIDF (D).

The following are some nice properties of the referential integrity differential
file RIDF (D). First, RIDF (D) keeps all and only those tuples (in D) that are
truly relevant to the join (ΔF �� D). Thus, the number of tuples in RIDF (D) is
bounded above by the number of tuples in D, that is, |RIDF (D)| ≤ |D|. Second,
for each candidate key of D, the number of tuples in RIDF (D) is bounded above
by the number of tuples in ΔF . This is due to referential integrity constraints.
More specifically, because f.fk = d.ck, many f can reference one d (but each
f can only reference one d). Hence, if D only has one candidate key (which
is quite common for the dimension tables modelled in a star schema), then
|RIDF (D)| ≤ |ΔF |. Third, RIDF (D) can be created without any significant
cost (e.g., no extra searches in D). The file RIDF (D) can be considered as a
“by-product” of the referential integrity checks.

Therefore, by exploiting properties of referential integrity constraints and by
using RIDF (D), Equation (2) can be simplified to become the following (i.e.,
the new view can be computed as follows):

v′ = F ′ �� D′ = v ∪ (ΔF �� RIDF (D)) ∪ (ΔF �� ΔD) �∇F �∇D (3)

where v = (F �� D) is the old view. Here, the fourth and the fifth terms (�∇F )
and (�∇D) represent the deletion of all the tuples containing f ∈ ∇F and
d ∈ ∇D, respectively. It is important to note that, with this self-maintainable
method, we no longer require accesses to the source data. The new view v′ can
be computed using (i) the old view v, (ii) the RIDF, and (iii) differential files
(ΔF, ΔD,∇F , and ∇D). See the following example.
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Example 1. Consider the following two relations F and D:

F (U, W, X) D(X, Y, Z)

F : u1 w1 x1 D: x1 y1 z1
u2 w2 x2 x2 y2 z2

x3 y3 z3
∇F : u2 w2 x2 ∇D: x3 y3 z3

ΔF : u3 w3 x1 ΔD: x4 y4 z4
u4 w4 x2

RIDF (D): x1 y1 z1
x2 y2 z2

In this example, when tuples 〈u3, w1, x1〉 and 〈u4, w4, x2〉 are inserted into F , the cor-
responding tuples in D (namely, 〈x1, y1, z1〉 & 〈x2, y2, z2〉) are recorded in RIDF (D).
It is important to note that (ΔF �� RIDF (D)) gives the same result as (ΔF �� D),
but the former does not require any accesses to the source data D while the latter does.
Hence, by keeping RIDF (D), one can compute the join more efficiently. Moreover, the
new view v′

1 ≡ (F ′ �� D′) can be computed using the old view v1 ≡ (F �� D) with the
differential files (ΔF, ΔD,∇F,∇D) and RIDF (D), according to Equation (3). 
�

4 Self-maintenance of Data Warehouse Views Involving
Two Dimension Tables

Given that our efficient method for view self-maintenance (as discussed in Sec-
tion 3.3) is not confined to just two relations (one fact and one dimension tables),
we show in this section how a new DW view containing a join over three relations
(say, a fact table F and two dimensions tables D1 & D2) – where foreign keys
of F references candidate keys of D1, D2 – can be computed using only the old
view and the “delta” of the corresponding relations (i.e., without accessing base
relations).

As we discussed in Section 3, an updated relation F ′ can be expressed in
terms of the old relation F , its insertion ΔF , and its deletion ∇F (i.e., F ′ =
F − ∇F ∪ ΔF ). Similar comments can be applied to D1 and D2. So, the new
view (F ′ �� D′

1 �� D′
2) can be expressed as follows:

v′ = (F ′ �� D′
1 �� D′

2)
= (F −∇F ∪ ΔF ) �� (D1 −∇D1 ∪ ΔD1) �� (D2 −∇D2 ∪ ΔD2). (4)

This equation can be factored into 33 = 27 terms. Fortunately, we can reduce
the number of terms in the expression by grouping all terms involving ∇F (and
those involving ∇D1 and ∇D2), as we did in Section 3.3. Moreover, some other
terms – such as (F �� D1 �� ΔD2), (F �� ΔD1 �� D2), and (F �� ΔD1 �� ΔD2)
– can be eliminated because any join involving F �� ΔDj (for j = 1 or 2) would
result in an empty relation. This is due to referential integrity constraints.

The exploitation of referential integrity constraints not only helps us to elim-
inate the three “join” terms mentioned above but also leads us to efficient self-
maintainability. Specifically, due to the constraints, whenever we insert a tuple f
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into the referencing relation F , we check to see if there exists a corresponding
tuple in the referenced relations D1 and D2. So, we create RIDF (D1) and
RIDF (D2) as “by-products” of the checks, and use them to compute the up-
dated view as follows:

v′ = (F ′ �� D′
1 �� D′

2)
= v ∪ (ΔF �� RIDF (D1) �� RIDF (D2))

∪ (ΔF �� RIDF (D1) �� ΔD2) ∪ (ΔF �� ΔD1 �� RIDF (D2))
∪ (ΔF �� ΔD1 �� ΔD2) �∇F �∇D1 �∇D2 (5)

where v = (F �� D1 �� D2) is the old view. Note that we do not need to access
the source data. The new view can be computed by using v, the differential files
(i.e., insertion files, deletion files), and RIDFs.

5 Generalization: Self-maintenance of Data Warehouse
Views Involving Multiple Dimension Tables

In general, DW views may contain joins over several relations that are modelled
in the form of a star schema – the most common modelling paradigm in data
warehousing environments – in which the data warehouse contains a fact table
and several dimension tables (say, m dimension tables). These tables are con-
nected in such a way that, for each dimension table Di, there exists a foreign
key of the fact table F referencing a candidate key of Di (where 1 ≤ i ≤ m).
Given a star schema consists of m dimension tables, a view may contain a join
over some (but not necessary all) of these dimension tables. Without loss of
generality, let us assume that the view contains a join over n dimension tables
D1, . . . , Dn (where n ≤ m). Then, the new view v′ = (F ′ �� D′

1 �� · · · �� D′
n)

can be expressed as follows:

v′ = (F ′ �� D′
1 �� · · · �� D′

n)
= (F −∇F ∪ ΔF ) �� (D1 −∇D1 ∪ ΔD1) �� · · · �� (Dn −∇Dn ∪ ΔDn) (6)

which can be factored into 3n+1 terms. As expected, the number of terms can
be greatly reduced (in two steps) by exploiting properties of referential integrity
constraints. First, there are 3n+1 − 2n+1 terms involving deletions, which can
be grouped together to form n + 1 “deletion” terms (one “deletion” term for
each table: ∇F,∇D1, . . . ,∇Dn). Second, there are 2n+1 “join” terms, out of
which 2n − 1 terms contain F with at least one ΔDj (for some 1 ≤ j ≤ n). It
is observed that any term containing F �� ΔDj results in an empty relation,
due to referential integrity constraints. Thus, these terms can be eliminated; we
only need to consider the remaining 2n + 1 “join” terms. Among them, we note
the following:

– The term (F �� D1 �� · · · �� Dn) represents the old view v.
– The term (ΔF �� ΔD1 �� · · · �� ΔDn) involves only differential files ΔDj

(for 1 ≤ j ≤ n).
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– There are 2n−1 terms contain ΔF , Di and ΔDj (for some 1 ≤ i, j ≤ n, where
i 
= j). The occurrence of Di in the term implies an access to source data.
Hence, in order to achieve self-maintainability, we replace each occurrence of
Di by RIDF (Di). As a result, we no longer need to access the source data.

In summary, the new view v′ = (F ′ �� D′
1 �� · · · �� D′

n) can be computed using
the following (n + 1) + (2n + 1) = 2n + n + 2 terms:

v′ = v ∪
(⋃

ΔF �� RIDF (Di) �� ΔDj

)

∪ (ΔF �� ΔDi �� · · · �� ΔDn) �∇F �∇D1 � · · · � ∇Dn, (7)

where 1 ≤ i, j ≤ n and i 
= j. Since the star schema is the most common
modelling paradigm in data warehousing environments, our proposed method
can be very beneficial.

Example 2. Consider a DW view containing a join over a fact table and n = 2 dimen-
sion tables in a star schema (which contains m ≥ 2 dimension tables). The new view
can be computed, using Equation (7), as follows:

v′ = (F ′ �� D′
1 �� D′

2)

= v ∪ (ΔF �� RIDF (D1) �� RIDF (D2)) ∪ (ΔF �� RIDF (D1) �� ΔD2)

∪ (ΔF �� ΔD1 �� RIDF (D2)) ∪ (ΔF �� ΔD1 �� ΔD2) �∇F �∇D1 �∇D2.

An observant reader may notice that this gives same expression as in Equation (5) –
for the efficient self-maintenance of DW views involving two dimension tables and a
fact table. 
�

6 Discussion: Further Improvements

So far, we have shown that RIDFs keep all and only those tuples that are relevant
for efficient self-maintenance of DW views modelled in a star schema. A careful
analysis reveals that we do not need to keep all the attributes of those relevant
tuples. Any attributes that do not contribute to the update of DW views can be
discarded. For instance, reconsider Example 1, but with view v2 ≡ πW,Y (F �� D)
where F (U, W, X) and D(X, Y, Z). When inserting 〈u3, w3, x1〉 into F , we only
need to keep 〈x1, y1〉 in RIDF (D) because the attribute Z does not contribute
to the self-maintenance of v2. Similarly, when inserting 〈u4, w4, x2〉 into F , only
〈x2, y2〉 needs to be kept in RIDF (D). By so doing, only two (instead of three)
attributes of the relevant tuples need to be stored in RIDFs.

The above shows the benefits on exploiting the project operator (π) – namely,
the reduction in the number of attributes required for self-maintenance. Along
this direction, we can also exploit the select operator (σ) in the SPJ to further
reduce the size of RIDFs. For instance, reconsider Example 1, but with view
v3 ≡ πW,Y σU �=u3(F �� D) this time. When inserting 〈u3, w3, x1〉 into F , we do
not even need to keep the tuple 〈x1, y1〉 because it does not contribute to the
self-maintenance of v3 (as U = u3, which violates the selection condition). So,
we only need to keep 〈x2, y2〉 in RIDF (D).
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Fig. 1. Relative speedup of view maintenance methods

7 Experimental Results

The experimental results cited below are based on a database (from TPC-D [18])
that consists of a fact table (namely, SupPart (SP)) and two dimension ta-
bles (namely, Product (P) and Supplier (S)), where the tables are logically
“linked” by the following referential integrity constraints: (i) P(pID, pName,
manufacturer, price), (ii) S(sID, sName, addr), and (iii) SP(pID, sID,
qty, SPrice) where pID references P and sID references S. Notice that
one could also add a “time” dimension to make the above star schema contain
three dimension tables.

In this experiment, we suppose that base relations P, S, and SP consist of
200,000 tuples, 10,000 tuples, and 800,000 tuples, respectively. We assume
that the selectivity of P.pName=‘computer’ is 0.70, S.addr=‘CA’ is 0.75,
SP.SPrice>P.price*1.1 is 0.50, and the join selectivity is 0.50 of transactions
with uniform distribution.

We illustrate the effectiveness of our self-maintainable method by comparing
the results of the following three implemented methods:

– The näıve method, which reads and sorts the base relations with a sort-
merge join.

– The improved method, which is similar to the näıve method except that
the improved method uses old views, differential files, and source relations.

– Our efficient self-maintainable method, which uses only old views, dif-
ferential files, and RIDFs. In other words, this method avoids accessing
source relations.
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Here, we first used view v4 ≡ πAσC4(SP �� P �� S), where the list of attribute A is
〈sName, price, SPrice, qty〉, and the selection condition C4 is “addr=‘CA’
& pName=‘computer’ & SPrice>price*1.1”. We varied the percentage of SP
tuples being updated/changed from 0.125% to 100% (i.e., varied the number
of updated SP tuples from 1,000 to 800,000, and correspondingly varied the
number of updated P tuples from 100 to 80,000 while keeping relation S un-
changed). The x-axis of Fig. 1 shows the percentage of updated SP tuples; the
y-axis, in logarithmic scale, shows the speedup of the improved method and our
self-maintainable method against the näıve method. As observed from Fig. 1,
the lower the percentage of updated tuples, the higher is the benefit of using
our method. For example, the speedup of our method is above 700 times when
0.125% of SP tuples are updated. It is important to note that a low percentage of
updated tuples is not uncommon. In many real-life applications, DW views need
to be refreshed frequently (which usually leads to a low percentage of tuples get
updated between each refresh) so as to facilitate accurate decision making.

While Fig. 1 shows the relative speedup, the table below gives some samples
of the total runtime (i.e., both CPU and I/O times) for updating view v4.

% updated SP tuples Näıve Improved Self-maintainable

0.125% 9358s 4148s 13s
1.25% 9358s 4217s 145s
12.5% 9358s 4904s 1183s

Note that our proposed self-maintainable method requires a much shorter run-
time than the other two methods. Moreover, when compared with some existing
approaches that use auxiliary structures (e.g., auxiliary views), our method also
incurs a much lower cost (e.g., an approach using auxiliary views requires more
than 4,000 seconds to update v4 when 1.25% of SP tuples get changed).

Next, let us count the numbers of tuples in the base relations, in the “delta”
(i.e., being changed), and in RIDFs. One can easily observe from the following
table that the number of tuples need to be stored in a RIDF is bounded above
by the numbers of tuples in its corresponding base relation and “delta” (e.g.,
|RIDF (P)| ≤ min{|P|, |ΔSP|} and |RIDF (S)| ≤ min{|S|, |ΔSP|}).

Base 1.25% updated SP tuples 87.5% updated SP tuples
relation “delta” RIDF “delta” RIDF

P 200,000 1,000 6,930 70,000 200,000
S 10,000 0 7,000 0 10,000
SP 800,000 10,000 0 700,000 0

In addition to applying the three view maintenance methods to view v4, we
have also applied these methods to other views (e.g., v5, v6 and v7). These ad-
ditional views, of the form vi = πAσCi(SP �� P �� S), are similar to v4 except
for the selection condition Ci. More specifically, C5 ≡ “pName=‘computer’ &
SPrice>price*1.1”, C6 ≡ “addr=‘CA’ & SPrice>price*1.1”, and C7 ≡
“SPrice>price*1.1”. The table below shows the runtime of the three methods
when 1.25% of SP tuples get updated.
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Näıve Improved Self-maintainable

v5 9358s 3375s 144s
v6 9358s 3574s 145s
v7 9358s 8498s 212s

8 Conclusions

Data warehouse (DW) views provide an efficient access to integrated data. As
changes are made to the source data, the corresponding views may be outdated.
Hence, the maintenance of views is crucial for the currency of information. In
this paper, we proposed a novel method to efficiently self-maintain the DW views
that contain a select-project-join (SPJ) over multiple relations. Specifically, we
exploit the referential integrity constraints imposed on the relations in the source
data. With our proposed method, views can be updated by using only the old
views, differential files (e.g., the insertion file ΔR and the deletion file ∇R), and
referential integrity differential files (RIDFs). This method uses the RIDFs to
keep the truly relevant tuples in the “delta”; it avoids accessing the underlying
databases. The proposed method is applicable to the efficient self-maintenance
of DW views that contain SPJ over relations modelled in a star schema – the
most popular model for data warehousing environments.
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prediction_based_broadcast(TrainRequestTransaction HS, 
CurrentRequestTransactions NS, BQueue Q){  
 
  AssociationRule R 
  PopuarityData PD;  
  CorrelatedData CD;  
 
  R = RuleIDF(HS);  
  PD = IsPop(NS);  
  for each subset SD of PD { 
    for each rule r in R{ 
      if r is formed as SD→ ED{ 
        for each item x in ED{ 
          if x does not exist in CD 
            add x to CD;  
        } 
      } 
 } 
   } 
   For each x in Q 
     if(x exist in CD)  
       increase pop(x);  
     else{ 
    decrease pop (x);  
       if(pop(x) < )  
      remove x from Q;  
     } 
   For each data item x in PD 
     append x to Q;  
} 
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Abstract. Approximate query processing is an adequate technique to
reduce response times and system load in cases where approximate re-
sults suffice. In database literature, sampling has been proposed to evalu-
ate queries approximately by using only a subset of the original data. Un-
fortunately, most of these methods consider either only certain problems
arising due to the use of samples in databases (e.g. data skew) or only
join operations involving multiple relations. We describe how well-known
sampling techniques dealing with group-by operations can be combined
with foreign-key joins such that the join is computed after the generation
of the sample. In detail, we show how senate sampling and small group
sampling can be combined efficiently with the idea of join synopses. Ad-
ditionally, we introduce different algorithms which maintain the sample
if the underlying data changes. Finally, we prove the superiority of our
method to the naive approach in an extensive set of experiments.

1 Introduction

As a result of rising computation and storage capacities, data acquisition has
become simpler and more versatile. The amount of information stored on a wide
range of different media has increased tremendously during the past years [1].
Data warehouse systems integrating different databases are capable of persis-
tently storing this surge of information. However, it is rather difficult to ex-
tract knowledge from these voluminous databases, since the respective database
queries usually suffer from long runtimes. Often an approximate but fast answer
is the better alternative, e.g. to support interactivity. Sampling is a widely used
technique which balances query result accuracy and response time.

The well-known simple random sampling (SRS) selects a fixed-sized random
subset of a relation such that every possible subset has the same probability
of being drawn. Approximate query evaluation using SRS assumes that the un-
derlying data is uniformly distributed. In order to circumvent this restriction
and to extend SRS to multiple relations, several techniques have been proposed.
However, they only address either data distribution or join processing. We show
how to combine sampling techniques developed to accurately answer group-by
queries [2, 3] with the well known technique of join synopses [4] for foreign-key
joins.

M. Jackson et al. (Eds.): BNCOD 2005, LNCS 3567, pp. 120–132, 2005.
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Related Work. The New Jersey Data Reduction Report [5] provides an over-
view of approximate query processing in general. Database-specific sampling
techniques can be divided into two classes: online sampling, which computes the
sample at query execution time, and offline sampling, which pre-computes the
sample and materializes it in the database. Obviously, by using offline sampling
it is possible to spend more effort in the computation of the sample in order
to increase the accuracy of approximate results. However, the sample has to be
maintained if the data is modified.

The method of online aggregation [6] belongs to the former of the two classes
mentioned above. The main idea is to present the user with iteratively refined
approximate results for aggregation queries. However, most sampling techniques
generate the sample offline in order to deal with data skew (e.g. non-uniformly
distributed value frequencies). Reservoir sampling [7, 8] allows the computation
of a sample of predefined size. ICICLES [9], developed by Ganti et. al., attempts
to generate and maintain a sample tailored to the actual query workload. The
outlier indexing [10] detects outliers within the data and uses this knowledge for
sample computation.

The main problem of bringing together sampling and join is the fact that
these two operations do not commute. For two relations R1 and R2, it holds in
general:

SRS(R1 �� R2) 
= SRS(R1) �� SRS(R2)

Therefore, it is not possible to compute a sample of a join by only using the
samples of the participating relations [11]. Fortunately, in the common case of
an N:1-relationship as appearing in star and snowflake schemes the situation is
less difficult, because it is possible to sample at least one of the involved relations:

SRS(R1 ��N :1 R2) = SRS(R1) ��N :1 R2

This property is the foundation of join synopses [4] which pre-calculate samples
over foreign-key relationships. With the help of this technique, expensive joins
are avoided at query execution time (sec. 2.1).

Typically, data is not uniformly distributed. This data skew causes enor-
mous problems if sampling is not applied carefully. For instance, the small group
problem appears: if the values of the grouping attributes are not uniformly dis-
tributed with regard to their frequency, groups consisting of only a few tuples
appear infrequently in the sample and, thus, contribute to the approximate re-
sult infrequently. Group-based sampling techniques such as senate sampling [2]
and small group sampling [3] deal with this problem.

Outline. The remainder of the paper is organized as follows. Section 2 provides
an overview of fundamental techniques which deal with sampling, join and group-
by. Additionally, we introduce the concept of a foreign-key tree which orders
relations into a hierarchy (thus the name), and we explain a naive combination
approach. In sections 3 and 4, we introduce algorithms superior to the naive
one. Section 5 presents an extensive experimental evaluation. Finally, a summary
concludes the paper in section 6.
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2 Sampling, Join and Group-by

This section briefly introduces sampling techniques for join operations as well
as group-based sampling. The new concept of foreign-key trees serves as the
foundation for the combination of these techniques.

2.1 Join Synopses

Acharya et. al. combine sampling and

Fig. 1. F.k. graph (left) & tree (right)

foreign-key joins by creating so-called
join synopses [4]. The foreign-key re-
lationship of a relation R1 with for-
eign key fk to a relation R2 is denoted
R1 →fk R2. The symbol ⇒ denotes the
transitive closure of →, and ⇒∗ the re-
flexive transitive closure. A foreign-key
graph visualizes → over a schema (cf.
Fig. 1, left). Every node represents a relation (and vice versa), every edge models
a foreign-key relationship. The example shows a relation A which has two foreign
keys fk1 and fk2 to relation B, i.e., A references B twice.

A join R1 �� R2 is a foreign-key join (FKJ) with source relation R1, if
the join condition compares a foreign key of R1 with the primary key of R2

(R1 → R2) for equality. The result of the FKJ consists of the primary key of the
source relation, and the foreign keys of all involved relations. If it is joined with
additional relations by using one of its foreign keys, another FKJ with the same
source relation is created – thus, there is always exactly one source relation,
which is used as a starting point. Between a relation R and an FKJ with source
relation R, there is a 1:1-relationship. Informally, the FKJ looks up foreign keys
in the respective relations and extends each tuple of the source relation by the
result. A simple example scenario is shown in Figure 2. On the right, the result
of the FKJ Emp �� Dep �� Loc is presented.

In the following, we assume that the foreign-key graph is free of cycles. In
this case, a maximum foreign-key join (MFKJ) can be determined for every
relation. It is free of redundancy; for example, it eliminates joins like A ��fk1

B ��fk1 . . . ��fk1 B (cf. Fig. 1, left). We introduce foreign-key trees to model such
maximum foreign-key joins.

Fig. 2. Example scenario and maximum foreign-key join
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Definition 1. The foreign-key tree tree(R) of a relation R is made up of a root
node r with associated relation rel(r) = R. For each foreign-key relationship of
type R →fk S, the foreign-key tree of S is connected to r with the edge r →fk

tree(S).

Figure 1 (right) shows the foreign-key tree (FKT) of relation A. There is an
N:1-relationship between nodes and relations. The MFKJ consists of one join
operation per edge of the foreign-key tree. In detail, each node is joined with the
MFKJ of its successors1. The MFKJ Jmax (A) of relation A is given by:

Jmax (A) = A ��fk1 (B ��fk3 (C ��fk5 D) ��fk4 D)
��fk2 (B ��fk3 (C ��fk5 D) ��fk4 D)

The join synopsis of a relation R resembles a random sample of Jmax (R).
Due to the 1:1-relationship of tuples in R and Jmax (R), it is possible to sample
R before executing the join, i.e., the sample U = SRS(R) is computed and af-
terwards, it joined with all the relations of the FKT, yielding Jmax (U). This is
crucial for the practicability of the method, since the complete MFKJ is very ex-
pensive to obtain. If a join synopsis is created for every relation of a schema, it is
possible to approximately answer all queries with FKJs by using the appropriate
synopsis.

2.2 Senate Sampling

Senate sampling [2] attacks the problem of sampling small groups; it ensures
that all groups appear in the sample. This is achieved by assigning the same
amount of space in the sample to each group. Therefore, it is necessary that all
potential grouping attributes are already known in advance. Furthermore, the
number of the non-empty groups has to be smaller than the size of the sample.
Thus, it is guaranteed that for every group there is at least one tuple reserved
in the sample.

The sampling process requires one scan of the relation. For each group, the
algorithm creates an independent reservoir [7], i.e. a temporary relation usually
stored in main memory. At any time, the reservoir contains a random sample of
all tuples of its group. If m groups have been seen so far, the size of each reservoir
is limited to sg = n

m tuples with n being the sample size. Therefore, each first
occurrence of a group yields to a decrease of the size of all reservoirs. After all
tuples have been processed, the reservoirs are written into a single sample table.

By using the senate sample, group-by queries can be answered approximately
and without losing any group. However, the procedure has some inherent dif-
ficulties: it is often the case that the number of groups is too high because of
the consideration of all potential grouping attributes and, thus, no useful sample
can be generated. Alternatively, it is possible to compute multiple samples, each
1 In the following, the term “node” is used synonymously for the relation associated

with it; e.g., the tuples of a node a refers to the tuples of the relation A assigned to
that node, actually
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for a subset of the grouping attributes. Furthermore – if we limit the number of
grouping attributes – small groups contain usually far less tuples than they have
space in the sample. As a result, parts of the sample remain unused.

2.3 Small Group Sampling

Another approach to solve the small-group problem has been developed by Bab-
cock et.al. and is called small group sampling (SGS, [3]). It generates multiple
sample tables and selects an adequate subset of them at query evaluation time.
The basic idea of SGS is to create a so-called small group table (SGT) for each
attribute of the base relation. These small group tables include all tuples which
have a rare value in the respective attribute. Therefore, the SGTs of a query’s
grouping attributes consist of tuples belonging to small groups. Additionally, a
random sample of the base relation is generated. In general, this base sample
covers tuples which belong to large groups.

The user has to define three parameters for the generation of the small group
sample. First, the base sampling rate r (0 < r ≤ 1) determines the size n of the
base sample in dependency of the number N of the tuples in the base relation
(n = N · r). Second, if an attribute has more than τ distinct values, no SGT is
generated. Therefore, τ is used to determine which attributes are likely to appear
in a group-by clause. Finally, the small group fraction f defines the upper size
limit of an SGT (nSGT ≤ N · f). Only the most rare attribute values appear in
the SGT. Thus, f implicitly draws the line between rare and frequent.

The computation of the SGS consists of two phases, each requiring one table
scan. First, a histogram is generated for each attribute. With their help, it is
possible to decide which values are rare. In the second phase, this knowledge
is used to generate the base sample and the SGTs. At query processing time,
the base sample and the SGTs of the respective grouping attributes are used
for approximate query evaluation. All tuples of groups which consist of at least
one rare value in a grouping attribute are completely covered by an SGT – their
aggregate is calculated exactly. All other groups are served by the base sample
and evaluated approximately.

Dependencies between attributes may cause the SGS to miss some groups.
Often, small groups which consist of frequent values only are not represented in
the sample. But in contrast to senate sampling, the grouping attributes do not
have to be known in advance and, thus, a small group sample is designed for
arbitrary grouping attributes. However, the parametration is quite difficult. Ad-
ditionally, functional dependencies between attributes lead to redundant SGTs,
e.g., the SGT of an attribute country name is likely to be equal to that of the
attribute country code.

2.4 Naive Combination

By combining join synopses and group-based sampling, we are able to answer
queries with foreign-key joins and/or group-by approximately. It is not mean-
ingful to simply use the MFKJ of a senate or small group sample, since thereby
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only attributes of the source relation would be considered as potential grouping
attributes. Alternatively, the complete MFKJ of the source relation could be
calculated and sampled afterwards. This naive approach is not feasible in most
cases due to its high computation costs. Instead, we introduce new algorithms
called hierarchical senate sampling (HSEN) and hierarchical small group sam-
pling (HSGS), which result in samples identical to that of the naive approach
but which are more efficient to obtain. Therefore, we show how to pull sampling
before the join as done for join synopsis computation.

3 Hierarchical Senate Sampling

HSEN requires the FKT of the source relation as its input. Unlike in regular
senate sampling, grouping attributes are defined at node level. Therefore, it is
possible to assign different grouping attributes to relations that appear more
than once within the tree. Throughout the paper, we use the scenario shown
in Figure 2 as an example. Note that the foreign-key graph and the foreign-key
tree of Emp are equal. Futhermore, let Loc.Location and Dep.Name be grouping
attributes. In the following, we describe the computation of HSEN, which is
divided into two phases.

3.1 Phase 1: Group Tables

Regular senate sampling determines the group of each tuple by extracting the
values of the grouping attributes. Unfortunately, this is not possible if multiple
relations are involved. Therefore, additional information has to be gathered from
the data before sampling the source relation.

Definition 2. The group table GTu of a node u contains one entry for every
tuple of u. Each of these entries consists of a primary key and a group identifier
(GID).

Thus, the group table (GT) captures the relationship between tuples and
groups (cf. Fig. 3, left), which in turn are represented by a unique group iden-
tifier (GID). With their help, the group of a tuple of the source relation can be
determined by looking up its foreign keys in the GTs of the respective referenced
nodes. The actual values of the grouping attributes are not of interest. It is suf-
ficient that tuples belonging to the same group have the same GID, and that
tuples belonging to different groups have a different GID as well.

The group table does not have to be calculated for every node. A node
is called directly grouping-relevant if at least one grouping attribute has been
defined on it. In the example, this applies to the nodes Loc and Dep. Addition-
ally, a node is called indirectly grouping-relevant if one of its successor nodes is
grouping-relevant. This holds for Dep and Emp.

The first phase of HSEN computes the GTs of all grouping-relevant, direct
successor nodes of the source relation. The algorithm starts with those nodes
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Fig. 3. Computation of the hierarchical senate sample

which do not have any grouping-relevant successor, and subsequently, proceeds
backwards along the foreign-key relationships to the root node (bottom-up).

Let u be the node currently processed and let v1, . . . , vk be its direct, group-
ing-relevant successors. The computation of GTu requires one scan of u. If k =
0, i.e. u has no successor nodes with grouping attributes, each tuple’s group
is determined by simply using the values of the grouping attributes defined
on it. A unique GID is assigned to each group. Thereby, a temporary data
structure captures the 1:1-relationship between groups and GIDs. For each tuple,
an entry consisting of its primary key and its GID is included in the GT. For
instance, Fig. 3 shows the GT of Loc. The relationship between groups and GIDs
is {(North, 1), (South, 2)}.

In order to calculate the GT of an indirectly grouping-relevant node (k > 0),
the GTs of all its direct, grouping-relevant successors must be known. For exam-
ple, GTLoc is required to calculate GTDep . In general, the procedure is identical
to the one for k = 0. However, the value of every foreign key to a successor node
is looked up in the respective group table. Afterwards, the obtained GID is used
as an additional grouping attribute. Therefore, groups generated by successor
nodes are considered, too. The complete algorithm is presented in more detail
in the full paper [12].

The GT of the node Dep is shown in the lower left of Fig. 3. For its computa-
tion, the attribute Name and the GID out of GTLoc have been used as grouping
attributes. By now, GTLoc is not needed anymore and is therefore deleted. The
first phase is finished at this point, since there is no need to calculate a GT for
the root node.

3.2 Phase 2: Sampling

The sampling of the source relation is almost identical to regular senate sampling.
The only difference is that foreign keys have to be looked up in the GT of the
respective successor node, and the obtained GID has to be used as additional
grouping attribute. Due to space restrictions, this algorithm is not presented
here.

Figure 3 (right) depicts a possible sample of size n = 3. One tuple is sampled
from each of the groups (Adm ,N ), (Man ,N ), and (Adm,S ). Finally, the MFKJ
of this sample has to be calculated. In the full paper [12], we discuss several
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optimizations of the algorithm presented here and describe how to maintain the
sample incrementally.

4 Hierarchical Small Group Sampling

As with senate sampling, SGS can be naively extended to multiple relations using
the MFKJ of the source relation. By proceeding hierarchically, the computation
costs are lowered noticeably and, thus, the method becomes practicable. Two
core problems have to be solved: the determination of rare values on the one
hand and of all tuples with these values on the other hand. The hierarchical
approach is structured into 3 phases: phase 1 deals with the former of the two
problems, phase 2 with the latter. In Phase 3 the base sample and the SGTs are
computed.

4.1 Phase 1: Histogram Calculation

As explained in section 2.3, the determination of rare values requires a histogram
for each attribute. If there is only one relation R, their calculation is simple.
However, if multiple relations have to be considered, it is not possible to calculate
the histograms2 of every relation separately, since the influence of the foreign
keys is lost otherwise. Instead, the number of references to every tuple has to be
considered during histogram calculation.

Definition 3. The reference table RTu⇒v contains the primary key of every
tuple of node v together with the number of tuples of node u that reference it via
foreign keys (u ⇒ v). Non-referenced tuples do not appear in the reference table.

For example, Fig. 4 (upper left part) shows the reference table RTEmp⇒Dep ,
which captures the number of references of every tuple in Dep. For instance,
the department with the number 3 is referenced four times. Subsequently, the
reference table is used for histogram calculation. Let w be the root node of the
FKT. Then, the reference table RTw⇒v is required for the computation of the
histograms of a node v. The reference count is used as a weight for each tuple.
For instance, the tuple (3,Adm, 1) of Dep is counted four times.

The computation of histograms and reference tables is done simultaneously.
In fact, the RT of a node v equals the (weighted) histogram of the foreign key
attributes of its predecessor x, that is, the reference table RTw⇒v is computed
together with the histograms of x. Since the root node w has no predecessor,
its histograms and reference tables to successor nodes are computed first and
without any weighting. Subsequently, the FKT is traversed top-down. For each
tuple of a node v, its primary key is looked up in the reference table RTw⇒v,
and the obtained reference count is used as tuple weight, i.e. as scale factor.
Therefore, the histograms are identical with those of the respective attributes in
the MFKJ Jmax (rel(w)). Please refer to the full paper [12] for a more detailed
description of this algorithm.
2 The histogram of the attribute i of node u is denoted Hu,i
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Fig. 4. Phase 1 and 2 of the computation of the hierarchical small group sample

After processing a node u, RTw⇒u is not needed anymore and therefore
deleted. Furthermore, all histograms are restricted to rare values, i.e. iteratively,
the most frequent value is removed until the number of tuples represented by the
histogram does not exceed the upper size limit anymore. All remaining tuples
will be included in the SGT later on (cf. sec. 2.3). Attributes with more than τ
distinct values or without any rare values do not require a histogram anymore.

In the left of Figure 4, the first phase of hierarchical small group sampling
is illustrated. In the example, the maximum number of distinct values is set
to 2, the upper size limit of an SGT to 3. Therefore, only the histograms of the
attributes Dep.Name and Loc.Location remain.

4.2 Phase 2: Key Sets and Assignment Sets

An SGT has to be generated for each attribute for which there is a non-empty
histogram remaining after the first phase. Now, we have to determine which
tuples of the source relation have to be included in which SGTs. Thus, the
restricted histograms are converted step by step to so-called key sets (KS, per
attribute), which consist of the primary keys of all tuples with rare values.

Definition 4. The key set Lu
u,i of a histogram Hu,i contains the primary keys

of all tuples of u, whose value of the attribute i appears in the histogram.

Since the restricted histograms contain rare values only, this applies to the
key sets, too. All histograms but those of the root node have to be converted
to key sets according to definition 4. Thereby, the FKT is traversed bottom-up
and a second table scan is performed at every node with at least one non-empty
histogram. Figure 4 (right) shows the key sets LLoc

Loc,Loc. and LDep
Dep,Name for the

example scenario. According to these key sets, the location with primary key 2
as well as the departments with primary keys 1 or 4 have a rare value in the
attribute Location and Name respectively (cf. Fig. 2).

Additionally, when processing a node v the key sets of its direct successor
nodes have to be converted to the primary keys of v.

Definition 5. Let v, u, and x be three nodes in the foreign-key tree with v 
= u
and v → u ⇒∗ x, and assume that Lu

x,i is known. Then, the key set Lv
x,i contains
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the primary keys of all tuples from v, whose foreign keys to u appear in the key
set Lu

x,i.

To summarize, the key set Lv
x,i contains all those primary keys of v which

lead to rare values of the attribute i of node x. The key sets of the leaf nodes
(covered by definition 4) are used as a starting point. In this case, v and x refer
to the same node. For instance, it holds Dep → Loc ⇒∗ Loc in the example
scenario. Therefore, the key set LLoc

Loc,Loc. is converted to LDep
Loc,Loc. according to

definition 5. It contains the primary keys of all tuples of Dep whose foreign key
to Loc is present in the key set LDep

Loc,Loc.. In other words, the department with
the primary key 4 leads to a rare value in the Loc.Location attribute.

An assignment set (AS, per node) integrates all the key sets of a specific
node.

Definition 6. The assignment set Mu
L of a node u consists of the key sets Lu

u,i

of all restricted histograms Hu,i. If u has the direct successor nodes v1, . . . , vk,
Mu

L additionally contains all key sets out of Mv1
L , . . . , Mvk

L converted to primary
keys of u according to definition 5.

Thus, all key sets of the assignment set Mu
L contain primary keys of u only.

In the example scenario, there are two AS: MLoc
L = {LLoc

Loc,Loc.} and MDep
L =

{LDep
Dep,Name , L

Dep
Loc,Loc.} (cf. Fig. 4). The computation of an AS requires the AS of

all successor nodes. This is the reason why the FKT has to be processed bottom-
up. Note that after the assignment set of a node u has been created, neither its
histograms nor the assignment sets of its successors are needed anymore. Please
refer to the full paper [12] for further details.

Only the assignment sets of the direct successors of the root node are the
output of the second phase. Subsequently, they are used to sample the source
relation.

4.3 Phase 3: Sampling

Just as with regular SGS, the source re-

Fig. 5. Phase 3 of HSGS

lation is scanned once to compute the
base sample and the SGTs. For each
attribute of the source relation, the as-
signment of tuples to SGTs is done with
the help of its histogram. For all other
attributes, the assignment sets are used,
that is, for each direct successor node
v the respective foreign key of the cur-
rent tuple is extracted and looked up
in every key set Lv

x,i within Mv
L. If it is present in there, the current tuple is

copied to the SGT of attribute i of node x. For example, only the tuples with
department number 1 or 4 are included in the SGT of Dep.Name (Fig. 5) since
LDep

Dep,Name contains the keys 1 and 4 only.
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Fig. 6. DB size & computation costs Fig. 7. Sampling rate & computation costs

Finally, the MFKJ of the base sample and the SGTs has to be computed.
Since a tuple may appear in more than one sample table, it is worth computing
the join before writing the sample tables in order to avoid unnecessary effort.
Again, the discussion of several optimizations as well as sample maintenance is
postponed to the full paper [8].

5 Evaluation

The hierarchical sampling techniques have been prototypically implemented and
compared to the naive approach. The database (IBM UDB v8.1) has been ad-
dressed by a Java middleware, in which the sampling techniques have been inte-
grated. The naive techniques have been implemented by using a view, and the
hierarchical techniques have been implemented as described in the previous sec-
tions. The test system has been an AMD AthlonTMXP 3000+ with 2 GB main
memory. All tests have been executed with the TPC-D benchmark [13] and arti-
ficially skewed data. The size of the processed data is expressed by a scale factor.
The relations Nation and Region have been excluded, since they only contain
few tuples and do not scale. The skewness of the data has been simulated by a
Zipf distribution with Zipf factor z. The Zipf factor z = 1 represents a uniform
data distribution. A higher value of z yields more skewed data.

For an evaluation of the quality of the hierarchical senate sample, we used
Customer .Nationkey and Part .Type as grouping attributes. The sampling rate
has been 5%, the Zipf factor z = 1.5. Figure 6 compares the computation time of
the sample and the main memory requirements. For large amounts of data, the
hierarchical approach requires about 40% of the time the naive approach takes.
The main memory requirements are almost identical for both approaches, even
though the hierarchical approach uses additional data structures. The reason
lies in the different use of the temporary reservoirs: on the one hand, they only
consist of tuples from the source relation (hierarchical); on the other hand, these
tuples are joined with all referenced relations in advance, and thus, become much
bigger (naive).

Figure 7 depicts the influence of the sampling rate on the computation time
and the memory requirements. The scale factor 0.1 has been used. The hierar-
chical approach accelerates the naive approach by a constant amount, i.e. it is
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Fig. 8. Data skew & accuracy Fig. 9. Approximate computation costs

mostly independent from the sample size. However, the naive approach needs
considerably more main memory with increasing sampling rates.

The same measurements have also been done for hierarchical small group
sampling. The results are almost identical. The only difference is the fact that
small group sampling needs considerably less main memory space both in the
naive and the hierarchical variant, but requires more computation time instead.
Due to space restrictions, these results are not shown in here.

As can be seen in Figure 8 (left), group-based sampling decreases the amount
of non-recognized groups considerably. A grouping by Customer .Nationkey and
Supplier .Nationkey has been done, the scale factor has been set to 0.1, and the
metrics from [3] have been used. For a uniform data distribution (z = 1), all
three sampling techniques offer comparable quality. But with increasing data
skew, simple join synopses (HSRS) lose almost all small groups, while the HSGS
only misses a few. The higher the data skew, the fewer middle-sized groups
exist and the better small group sampling works. Finally, the HSEN recognizes
all groups. It draws an advantage from the fact that it knows the grouping
attributes in advance. The accuracy of the different techniques (cf. Figure 8,
right) is evaluated similarly. For each group, the average revenue (price minus
discount) has been calculated. Its root mean square error is shown in the figure.

Figure 9 (left) depicts the speed increase by approximate query processing
with a sample size of 5% (logarithmic scale units). A scale factor of 0.1 has been
used. The response time of join synopses and hierarchical group-based techniques
is identical. On average, it is about 2.5% of the time required to compute the
exact answer. As can be seen in Figure 9 (right), the sampling rate has a linear
effect on the response time of an approximate query, relative to the one of an
exact query.

6 Summary

We have shown how to efficiently combine foreign-key joins and group-based
sampling. The resulting samples can be used to approximately answer queries,
in which a relation and the relations referenced by it via foreign-key relationships
are joined and/or in which groupings appear. It is not necessary to access the
base data; all the required information is present in the sample.
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Our approaches can also be applied to other sampling techniques. For exam-
ple, with the help of reference tables, the outliers detected by outlier indexing
can be determined more efficiently.
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Abstract. With the increasing amount and diversity of information available on
the Internet, there has been a huge growth in information systems that need to
integrate data from distributed, heterogeneous data sources. Tracing the lineage
of the integrated data is one of the problems being addressed in data warehousing
research. This paper presents a data lineage tracing approach based on schema
transformation pathways. Our approach is not limited to one specific data model
or query language, and would be useful in any data transformation/integration
framework based on sequences of primitive schema transformations.

1 Introduction

A data warehousing system collects data from distributed, autonomous and heteroge-
neous data sources into a central repository to enable analysis and mining of the inte-
grated information. However, sometimes what we need is not only to analyse the data in
the integrated database, but also to investigate how certain integrated information was
derived from the data sources, which is the problem of data lineage tracing (DLT). Sup-
porting DLT in data warehousing environments has a number of applications: in-depth
data analysis, on-line analysis mining (OLAM), scientific databases, authorization man-
agement, and materialized view schema evolution [2, 8, 9, 13, 18].

AutoMed1 is a heterogeneous data transformation and integration system which of-
fers the capability to handle data integration across multiple data models. In the Au-
toMed approach, the integration of schemas is specified as a sequence of primitive
schema transformation steps, which incrementally add, delete or rename schema con-
structs, thereby transforming each source schema into the target schema. We term the
sequence of primitive transformations steps defined for transforming a schema S1 into
a schema S2 a transformation pathway from S1 to S2.

In [11] we discussed how AutoMed metadata can be used to express the schemas
and the cleansing, transformation and integration processes in heterogeneous data ware-
housing environments. In this paper, we focus on how AutoMed metadata can be used
for tracing the lineage of data in an integrated database.

The outline of this paper is as follows. Section 2 gives a review of related work. Sec-
tion 3 gives an overview of AutoMed, as well as a data integration example. Section 4
presents our DLT techniques, including the DLT formulae developed to handle virtual
intermediate lineage data and the DLT algorithm operating along a general schema
transformation pathway. Section 5 gives our concluding remarks.

1 See http://www.doc.ic.ac.uk/automed/
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2 Related Work

The problem of data lineage tracing in data warehousing environments has been for-
mally studied by Cui et al. in [6–8]. In particular, the fundamental definitions regard-
ing data lineage, including tuple derivation for an operator and tuple derivation for a
view, were developed in [8], as were methods for derivation tracing with both set and
bag semantics. Their work has addressed the derivation tracing problem using bag se-
mantics and has provided the concept of derivation set and derivation pool for tracing
data lineage with duplicate elements. Reference [6] also introduces a way to trace data
lineage for complex views in data warehouses. However, the approach is limited to the
relational data model.

Another fundamental concept of data lineage is discussed by Buneman et al. in
[4], namely the difference between “why” provenance and “where” provenance. Why-
provenance refers to the source data that had some influence on the existence of the
integrated data. Where-provenance refers to the actual data in the sources from which
the integrated data was extracted.

In our approach, both why- and where-provenance are considered, using bag seman-
tics. Our previous work [10] defines the notions of affect-pool and origin-pool for data
lineage tracing in AutoMed – the former derives all of the source data that had some
influence on the tracing data, while the latter derives the specific data in the sources
from which the tracing data is extracted. In that work we develop formulae for deriv-
ing the affect-pool and origin-pool of a data item in the extent of a materialised schema
construct created by a single schema transformation step. Our DLT approach is to apply
these formulae on each transformation step in a transformation pathway in turn, so as
to obtain the lineage data in stepwise fashion.

Cui and Widom in [7] also discuss the problem of tracing data lineage for gen-
eral data warehousing transformations, that is, the considered operators and algebraic
properties are no longer limited to relational views. However, without a framework for
expressing general transformations in heterogeneous database environments, most of
algorithms in [7] are recalling the view definition and examining each item in the data
source to decide if the item is in the data lineage of the data being traced. This can be
expensive if the view definition is a complex one and enumerating all items in the data
source is impractical for large data sets.

Reference [18] proposes a general framework for computing fine-grained data lin-
eage, i.e. a specific derivation in the data source, using a limited amount of information,
weak and verified inversion, about the processing steps. Based on weak and verified
inversion functions, which must be specified by the transformation definer, the paper
defines and traces data lineage for each transformation step in a database visualization
environment. However, the system cannot obtain the exact lineage data, only a number
of guarantees about the lineage is provided. Further, specifying weak and verified in-
version functions for each transformation step is onerous work for the data warehouse
definer. Moreover, the DLT procedures cannot straightforwardly be reused when the
data warehouse evolves. Our approach considers the problem of data lineage tracing at
the tuple level and computes the exact lineage data. Moreover, AutoMed’s ready sup-
port for schema evolution (see [12]) means that our DLT algorithms can be reapplied if
schema transformation pathways evolve.
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One limit of our earlier work described in [10] is that we assumed the transforma-
tion pathway used by our DLT algorithm is fully materialised, i.e. new schema con-
structs created along the pathway are materialised. In practice, we need to handle the
situation of virtual or partially materialised transformation pathways, in which interme-
diate schema constructs may or may not be materialised. In this paper, we describe an
approach for tracing data lineage along a general schema transformation pathway.

3 Overview of AutoMed

AutoMed supports a low-level hypergraph-baseddata model (HDM). Higher-level mod-
elling languages are defined in terms of this HDM. For example, previous work has
shown how relational, ER, OO [15], XML [19], flat-file [3] and multidimensional [11]
data models can be so defined. An HDM schema consists of a set of nodes, edges
and constraints, and each modelling construct of a higher-level modelling language is
specified as some combination of HDM nodes, edges and constraints. For any mod-
elling language M specified in this way, via the API of AutoMed’s Model Definitions
Repository [3], AutoMed provides a set of primitive schema transformations that can
be applied to schema constructs expressed in M. In particular, for every construct of
M there is an add and a delete primitive transformation which add to/delete from a
schema an instance of that construct. For those constructs of M which have textual
names, there is also a rename primitive transformation.

In AutoMed, schemas are incrementally transformed by applying to them a se-
quence of primitive transformations t1, . . . , tr. Each primitive transformation adds,
deletes or renames just one schema construct, expressed in some modelling language.
Thus, the intermediate (and indeed the target) schemas may contain constructs of more
than one modelling language.

Each add or delete transformation is accompanied by a query specifying the extent
of the new or deleted construct in terms of the rest of the constructs in the schema. This
query is expressed in a functional query language IQL2. The queries within add and
delete transformations are used by AutoMed’s Global Query Processor to evaluate an
IQL query over a global schema in the case of a virtual data integration scenario. In the
case that the global schema is materialised, AutoMed’s Query Evaluator can be used
directly on the materialised data.

3.1 Simple IQL

In order to illustrate our DLT algorithm, we use a subset of IQL, Simple IQL (SIQL), as
the query language in this paper. More complex IQL queries can be encoded as a series
of transformations with SIQL queries on intermediate schema constructs. We stress
that although illustrated within a particular query language syntax, our DLT algorithms
could also be applied to schema transformation pathways involving queries expressed
in other query languages supporting operations on set, bag and list collections.

2 IQL is a comprehensions-based functional query language. Such languages subsume query
languages such as SQL and OQL in expressiveness [5]. We refer the reader to [14, 17] for
details of IQL and references to work on comprehension-based functional query languages
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Supposing D, D1 . . . , Dn denote bags of the appropriate type (base collections),
SIQL supports the following queries: group D groups a bag of pairs D on their first
component. distinct D removes duplicates from a bag. f D applies an aggregation
function f (which may be max, min, count, sum or avg) to a bag. gc f D groups
a bag D of pairs on their first component and applies an aggregation function f to the
second component. ++ is the bag union operator and −− is the bag monus operator
[1]. SIQL comprehensions are of three forms: [x|x1 ← D1; . . . ;xn ← Dn;C1; ...;Ck],
[x|x ← D1; member D2 y], and [x|x ← D1; not(member D2 y)]. Here, each x1,
..., xn is either a single variable or a tuple of variables. x is either a single variable or
value, or a tuple of variables or values, and must include all of variables appearing in
x1, ..., xn. Each C1, ..., Ck is a condition not referring to any base collection. Also, each
variable appearing in x and C1, ..., Ck must also appear in some xi, and the variables in
y must appear in x. Finally, a query of the form map (λx.e) D applies to each element
of a collection D an anonymous function defined by a lambda abstraction λx.e and
returns the resulting collection.

Comprehension syntax can express the common algebraic operations on collection
types such as sets, bags and lists [5] and such operations can be readily expressed
in SIQL. In particular, let us consider selection (σ), projection(π), join (��), and ag-
gregation (α) (union (

⋃
) and difference (−) are directly supported in SIQL via the

++ and −− operators). The general form of a Select-Project-Join (SPJ) expression is
πA(σC(D1 �� ... �� Dn)) and this can be expressed as follows in comprehension syn-
tax: [A|x1 ← D1; . . . ;xn ← Dn;C]. However, since in general the tuple of variables A
may not contain all the variables appearing in x1, ...,xn (as is required in SIQL), we
can use the following two transformation steps to express a general SPJ expression in
SIQL, where x includes all of the variables appearing in x1, . . . .xn:

v1 = [x|x1 ← D1; . . . ;xn ← Dn;C]
v = map (λx.A) v1

The algebraic operator α applies an aggregation function to a collection and this func-
tionality is captured by the gc operator in SIQL. E.g., supposing the scheme of a col-
lection D is D(A1,A2,A3), an expression αA2,f(A3)(D) is expressed in SIQL as:

v1 = map (λ{x1,x2,x3}.{x2,x3}) D
v = gc f v1

3.2 An Example Data Integration

In this paper, we will use schemas expressed in a simple relational data model to illus-
trate our techniques. However, we stress that these techniques are applicable to schemas
defined in any data modelling language having been specified within AutoMed’s Model
Definitions Repository, including modelling languages for semi-structured data [3, 19].

In our simple relational model, there are two kinds of schema construct: Rel and
Att. The extent of a Rel construct 〈〈R〉〉 is the projection of relation R onto its primary
key attributes k1, ..., kn. The extent of each Att construct 〈〈R, a〉〉 where a is a non-key
attribute of R is the projection of R onto k1, ..., kn, a. We refer the reader to [15] for an
encoding of a richer relational data model, including the modelling of constraints.

Suppose that MAtab(CID, SID, Mark) and IStab(CID, SID, Mark) are two source
relations for a data warehouse respectively storing students’ marks for two departments
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MA and IS, in which CID and SID are the course and student IDs. Suppose also that
a relation CourseSum(Dept, CID, Total, Avg) is in the data warehouse which gives the
total and average mark for each course of each department.

The following transformation pathway expresses the schema transformation and
integration processes in this example. Due to space limitations, we have not given
the steps for removing the source relation constructs (note that this ‘growing’ and
‘shrinking’ of schemas is characteristic of AutoMed schema transformation pathways).
Schema constructs 〈〈Details〉〉 and 〈〈Details, Mark〉〉 are temporary ones which are cre-
ated for integrating the source data and then deleted after the global relation is created.

addRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]
++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];

addAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]
++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];

addRel 〈〈CourseSum〉〉 distinct [{k,k1}|{k,k1,k2}←〈〈Details〉〉]
addAtt 〈〈CourseSum, Total〉〉 [{x,y,z}|{{x,y},z}← (gc sum

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
addAtt 〈〈CourseSum, Avg〉〉 [{x,y,z}|{{x,y},z}← (gc avg

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
delAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]

++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];
delRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]

++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];
...

Note that some of the queries appearing in the above transformation steps are not
SIQL but general IQL queries. In such cases, for the purposes of lineage tracing, we
decompose a general IQL query into a sequence of SIQL queries by means of a depth-
first traversal of the IQL query tree. For example, the IQL query
[{x,y,z}|{{x,y},z}← (gc avg [{{k,k1},x}| {k,k1,k2,x}←〈〈Details, Mark〉〉])]

is decomposed into following sequence of SIQL queries:
v1 = map (λ{k,k1,k2,x}.{{k1,k2},x}) 〈〈Details, Mark〉〉
v2 = gc avg v1
v = map (λ{{x,y},z}.{x,y,z}) v2

In the rest of the paper, our discussion assumes that all queries in transformation steps
are SIQL queries.

4 Data Lineage Tracing with AutoMed Schema Transformations

In heterogenous data integration environments, the data transformation and integration
processes can be described using AutoMed schema transformation pathways (see [11]).
Our DLT approach is to use the individual steps of these pathways to compute the
lineage data of the tracing data by traversing the pathways in reverse order one step
at a time. In particular, suppose a data source LD with schema LS is transformed into
a global database GD with schema GS, and the transformation pathway LS → GS is
ts1, ..., tsn. Given tracing data td belonging to the extent of some schema construct in
GD, we firstly find the transformation step tsi which creates that construct and obtain
td’s lineage, dli, from tsi. We then continue by tracing the lineage of dli from the
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Table 1. DLT Formulae for MtMs

v DL(t)

group D [{x, y}|{x, y} ← D; x = a]

sort D D|t
distinct D D|t
aggFun D D

gc aggFun D [{x, y}|{x, y} ← D; x = a]

D1 ++ D2 ++ . . . ++ Dn ∀i.Di|t
D1 −− D2 D1|t, D2

[x|x1 ← D1; . . . ;xn ← Dn;C] ∀i.[xi|xi ← Di; xi = ((λx.xi) t)]

[x|x ← D1; member D2 y] D1|t, [y|y ← D2; y = ((λx.y) t)]

[x|x ← D1; not(member D2 y)] D1|t, D2

map (λx.e) D [x|x ← D, e = t]

remaining transformation pathway ts1, . . . , tsi−1. We continue in this fashion, until we
obtain the final lineage data from the data source LD.

Since delete transformations do not create schema constructs, they can be ignored
in the DLT process. Tracing data lineage with respect to a transformation rename
(O, O′) is simple – the lineage data in O is the same as the tracing data in O′. It only
remains to consider add transformations. A single add transformation step can be ex-
pressed as v=q, in which v is the new schema construct created by the transformation
and q is an SIQL query over the current schema constructs. We have developed a DLT
formula for each type of SIQL query which, given tracing data in v, evaluates the lin-
eage of this data from the extents of the schema constructs referenced in v=q. If these
extents and the tracing data are both materialised, Table 1 gives the DLT formulae for
tracing the affect-pool of a tuple t, DL(t). The DLT formulae for tracing the origin-pool
are similar and we refer the reader to [10] for a discussion of the difference between the
affect-pool and the origin-pool.

In Table 1, D|t denotes all instances of the tuple t in the bag D (i.e. the result of
the query [x|x ← D; x = t]). Since the results of queries of the form group D and
gc f D are a collection of pairs, in the DLT formulae for these two queries we assume
that the tracing tuple t is of the form {a, b}.

The DLT formulae in Table 1 either provide a derivation tracing query [8] specify-
ing the lineage data of t or, in some cases, give the lineage data directly. If a formula
returns a derivation tracing query, we need to evaluate the query to obtain the lineage
data. If a formula returns the lineage data directly, no such evaluation is needed.

If all schema constructs created by add transformations are materialised, a sim-
ple way to trace the lineage of data in the global database GD is to apply the above
DLT formulae on each transformation step in the transformation LS → GS in reverse
from GS, finally ending up with the lineage data in the original data source LD. Such a
DLT method has been described in our previous work [10]. However, in general trans-
formation pathways not all schema constructs created by add transformations will be
materialised, and the above simple DLT approach is no longer applicable because it
does not obtain lineage data from a virtual schema construct. In this paper, we propose
a DLT approach that handles such general transformation pathways.
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4.1 The Approach

One approach to solving the problem of virtual schema constructs would be to use Au-
toMed’s Global Query Processor to evaluate the query creating the virtual construct and
compute its extent, so that the above simple DLT approach could be applied. However,
this approach is impractical due to the space and time overheads it incurs.

Instead, our approach is to use a data structure, Lineage, to denote lineage data from
the extent of a schema construct. If the construct is materialised, Lineage contains the
actual lineage data. If the construct is virtual, Lineage contains relevant information
for deriving the lineage data. This information will be used by subsequent DLT steps
to evaluate the final lineage data. Each Lineage object contains five attributes: (i)data,
which is a collection of materialised lineage data or, if the lineage data is virtual, the
value null; (ii) construct, which is the name of the schema construct whose extent
contains the lineage data; (iii) isVirtual, stating if the lineage data is virtual or not; (iv)
elemStruct, describing the structure of the data in the extent of a virtual schema con-
struct, e.g. a 2-item tuple {x1,x2}, or a 3-item tuple {x1,x2,x3}; (v) constraint,
expressing the constraint specifying the lineage data from a virtual schema construct.

For example, suppose lineage data in a schema construct D is derived from the
query [{x, y}|{x, y} ← D; x = 5], and lp is a Lineage object expressing the lineage
data. If D=[{1,2},{5,1},{5,2},{3,1}] is materialised, then lp will be: lp.data =
[{5,1},{5,2}]; lp.construct= “D”; lp.isVirtual = false; lp.elemStruct= null;
and lp.constraint= null. On the other hand, if D is a virtual schema construct, then
lp will be: lp.data = null; lp.construct= “D”; lp.isVirtual = true; lp.elemStruct =
“{x,y}”; and lp.constraint= ”x=5”.

We denote by O|dl a Lineage object in which O is the name of the schema con-
struct and dl is the data lineage. If the lineage data is materialised, dl will be the
data itself, otherwise dl will be the form of (S, C), where S denotes the elemStruct
and C the constraint. For example, the above two Lineage objects are denoted by
D|[{5,1},{5,2}] and D|({x,y},x=5), respectively.

4.2 The DLT Formulae

It is necessary that our DLT formulae can handle the following four cases: MtMs –
both the tracing data and the source data are materialised; MtVs – the tracing data is
materialised and the source data is virtual; VtMs – the tracing data is virtual and the
source data is materialised; and VtVs – both the tracing data and the source data are
virtual. The DLT formulae for the case of MtMs were given in Table 1, and from these
we have derived the DLT formulae for the other three cases:

Case MtVs. There were two kinds of DLT formulae in Table 1: tracing queries and
real lineage data. Since with MtVS the source data is virtual, we cannot evaluate trac-
ing queries and so Lineage objects are required to store the information about these
queries. For example, the tracing query [{x, y}|{x, y} ← D; x = a] is expressed as
D|({x, y}, x = a). In the case of real lineage data, the lineage data might be the tracing
data, t, itself or all the items in a source collection D. If the lineage data is t, it is avail-
able no matter whether D is materialised or not. If the the lineage data is all items in
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Table 2. DLT Formulae for MtVs

v DL(t)

group D D|({x, y}, x = a)

sort D D|t
distinct D D|t
aggFun D D|(any, true)

gc aggFun D D|({x, y}, x = a)

D1 ++ D2 ++ . . . ++ Dn ∀i.Di|t
D1 −− D2 D1|t, D2|(any, true)

[x|x1 ← D1; . . . ;xn ← Dn;C] ∀i.Di|(xi, xi = ((λx.xi) t))

[x|x ← D1; member D2 y] D1|t, D2|(y, y = ((λx.y) t))

[x|x ← D1; not(member D2 y)] D1|t, D2|(any, true)

map (λx.e) D D|(x, e = t)

a virtual collection D, it is expressed by D|(any,true). Table 2 illustrates the DLT
formulae for the case of MtVs.

Case VtMs. Virtual tracing data can be created by virtual source data. In particu-
lar, there are three kinds of virtual lineage data created in Table 2: (any,true),
({x,y},x=a), and (x,e=t) 3. The DLT formulae for VtMs can be derived by apply-
ing these three kinds of virtual tracing data to the formulae given in Table 1. In this case,
all source data is materialised, there is no virtual intermediate lineage data created.

For example, suppose the query is v=group D. If the virtual tracing tuple t is
(any,true), the lineage data DL(t) is all data in D, i.e. DL(t) = D. If t is ({x,y},
x=a), DL(t) is all tuples in D with first component equal to a, which is the result of
the query [{x, y}|{x, y} ← D; x = a]. If t is (x,e=t), DL(t) is all tuples in D with
first component equal to the first component of the tracing data t, which is the result of
the query [{x, y}|{x, y} ← D; member [first x|x ← v; e = t]]. We can see that the
virtual view, v, is used in this query. Since the source data is materialised, we can easily
recover v and evaluate the tracing query.

Table 3 gives the whole list of formulae for the case of VtMs with virtual tracing
data of the form (x,e=t). The formulae for the other two kinds of virtual tracing data
can easily be derived.

Case VtVs. The DLT formulae for VtVs are similar to the formulae for VtMs but in this
case the source data are unavailable. Thus, we use Lineage objects to store the virtual
intermediate lineage data.

For example, suppose the query is v=group D. If the virtual tracing tuple t is
(any,true), the virtual lineage data DL(t) is D|(any,true). If t is ({x,y},
x=a), the virtual DL(t) is D|({x,y},x=a). If t is (x,e=t), the virtual DL(t) is
D|({x,y}, member[first x|x ← v;e=t] x). Note that, the virtual view v is used

3 Note that in Table 2 the lineage data (xi, xi = ((λx.xi) t)) and (y, y = ((λx.y) t)) in
the 8th and 9th lines are not virtual. Since t is real data and variable tuple x contains
all variables appearing in xi, the expression (λx.xi) t returns real data too. For exam-
ple, supposing x = {x1, x2, x3}, xi = {x1, x3}, and t = {1, 2, 3}, then (λx.xi) t =
(λ{x1, x2, x3}.{x1, x3}) {1, 2, 3} = {1, 3}
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Table 3. DLT Formulae for VtMs with tracing data (x, e = t)

v DL(t)

group D [{x, y}|{x, y} ← D; member [first x|x ← v; e = t] x]

sort D [x|x ← D; e = t]

distinct D [x|x ← D; e = t]

aggFun D D

gc aggFun D [{x, y}|{x, y} ← D; member [first x|x ← v; e = t] x]

D1 ++ D2 ++ . . . ++ Dn ∀i.[x|x ← Di; e = t]

D1 −− D2 D1|[x|x ← v; e = t], D2

[x|x1 ← D1; . . . ;xn ← Dn;C] ∀i.[xi|xi ← Di;
member (map (λx.xi) [x|x ← v; e = t]) xi]

[x|x ← D1; member D2 y] [x|x ← D1; member D2 y; e = t],
[y|y ← D2; member (map (λx.y) [x|x ← v; e = t]) y]

[x|x ← D1; not(member D2 y)] D1|[x|x ← v; e = t], D2

map (λx1.e1) D [x1|x1 ← D; e = t]

in this virtual lineage data expression. However, since the source data D is virtual, we
cannot recover v by just evaluating the query v=group D. In this case, AutoMed’s
Global Query Processor can be used to materialise v. Once v is materialised, the virtual
tracing data t can also be recovered and this situation reverts to the case of MtVs which
we discussed earlier. Alternatively, the view definition of v can be propagated through
the remaining DLT steps until the end of the process. So far we have only implemented
the first approach and it remains to implement the second approach and investigate their
trade-offs.

4.3 DLT for General Transformation Pathways

Having obtained the DLT formulae for above four cases, lineage data based on a sin-
gle transformation step is obtained by applying the appropriate formula to the step’s
query. Our DLT procedure for a single transformation step is DLT4AStep(td, ts) and
its output is the lineage of td in ts’s data sources i.e. a list of Lineage objects which
might contain either materialised or virtual lineage data. In our DLT algorithms for a
general transformation pathway, there are two further procedures: tracing the lineage
of a single tuple along a transformation pathway and tracing the lineage of a set of
tuples along a transformation pathway. This is because the lineage of one Lineage
object based on a single transformation step might be a list of Lineage objects, if
the transformation step has multiple data sources. Figure 1 gives the two procedures:
oneDLT4APath(td, [ts1, ..., tn]) traces the lineage of a single tracing tuple td along
a transformation pathway [ts1, ..., tn], and listDLT4APath([td1, ..., tdm], [ts1, ..., tsn])
traces the lineage of a list of tracing tuples along a transformation pathway.

oneDLT4APath firstly finds the transformation step, tsi, which creates the schema
construct containing td and then calls the procedure DLT4AStep to obtain the lineage
of td based on this transformation step. DLT4AStep returns a list of Lineage objects.
After that, the procedure oneDLT4APath calls the procedure listDLT4APath to further
trace the lineage of this list of Lineage objects along the rest of the transformation
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Proc oneDLT4APath(td, [ts1, ..., tsn])
{ lpList = ø;

for i = n downto 1, do
if (td.construct is created by tsi)

Num = i;
lpList = DLT4AStep(td, tsi);
continue; //* End the for loop

restTP = [ts1, ..., tsNum];
return listDLT4APath(lpList, restTP );

}

Proc listDLT4APath([td1, ..., tdm], [ts1, ..., tsn])
{ lpList = ø;

for i = 1 to m, do
lpList = merge(lpList, oneDLT4APath(tdi, [ts1, ..., tsn]));

return lpList;
}

Fig. 1. DLT Algorithms for a general transformation pathway

pathway (i.e. the steps prior to tsi). oneDLT4APath also returns a list of Lineage
objects. listDLT4APath itself calls oneDLT4APath for each item tdi in the tracing
data list to find the entire lineage of the whole list based on the transformation pathway.
The merge function is used to avoid duplication of lineage data: A tuple, dl, might be
in the lineage of two different tracing tuples, tdi and tdj (i 
= j). If dl and all its copies
in a source collection have already been added to lpList as the lineage of tdi, we do
not add them again into lpList as the lineage of tdj .

The complexity of the overall DLT process is O(n × m) where n is the number of
add transformations in the transformation pathway and m is the number of different
schema constructs referenced in the pathway.

4.4 Example

We use the example described in Section 3.2 to illustrate our DLT approach. Recall that
some queries appearing in the example are not SIQL queries but general IQL queries. In
such situations, we firstly decompose these IQL queries into sequences of SIQL queries.

Supposing td = {’MA’,’MAC01’,81} is a tuple in the extent of the construct
〈〈CourseSum, Avg〉〉 in the global database GD, the transformation pathway generating
〈〈CourseSum, Avg〉〉 construct can be expressed as following sequence of view defini-
tions, where the intermediate constructs v1, . . ., v4 and 〈〈Details, Mark〉〉 are virtual:

v1 = [{’IS’,k1,k2,x}|{k1,k2,x}← 〈〈IStab, Mark〉〉]
v2 = [{’MA’,k1,k2,x}|{k1,k2,x}← 〈〈MAtab, Mark〉〉]
〈〈Details, Mark〉〉 = v1 ++ v2
v3 = map (λ{k,k1,k2,x}.{{k,k1},x}) 〈〈Details, Mark〉〉
v4 = gc avg v3
〈〈CourseSum, Avg〉〉 = map (λ{{x,y},z}.{x,y,z}) v4
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Traversing this transformation pathway in reverse, we obtain td’s lineage data, dl,
with respect to each view as follows:

td = 〈〈CourseSum, Avg〉〉|{’MA’,’MAC01’,81}
MtVs
=⇒ v4|dl = v4|{{’MA’,’MAC01’},81}
MtVs
=⇒ v3|dl = v3|({x,y},x={’MA’,’MAC01’})
VtVs
=⇒ 〈〈Details, Mark〉〉|dl = 〈〈Details, Mark〉〉|({k,k1,k2,x},{k=’MA’;k1=’MAC01’})
VtVs
=⇒ v2|dl = v2|({k,k1,k2,x},{k=’MA’;k1=’MAC01’}),

v1|dl = v1|({k,k1,k2,x},{k=’MA’;k1=’MAC01’})
VtMs
=⇒ 〈〈MAtab, Mark〉〉|dl = 〈〈MAtab, Mark〉〉|({k1,k2,x},{’MA’=’MA’;k1=’MAC01’})

〈〈IStab, Mark〉〉|dl = 〈〈IStab, Mark〉〉|({k1,k2,x},{’IS’=’MA’;k1=’MAC01’})
In conclusion, we can see that the lineage from 〈〈IStab, Mark〉〉 is empty and the lin-

eage form 〈〈MAtab, Mark〉〉 is obtained by evaluating the final tracing query [{k1,k2,
x}| {k1,k2,x}← 〈〈MAtab, Mark〉〉; ’MA’=’MA’;k1=’MAC01’].

5 Concluding Remarks

AutoMed schema transformation pathways can be used to express data transformation
and integration processes in heterogeneous data warehousing environments. This pa-
per has discussed techniques for tracing data lineage along such pathways and thus
addresses the general DLT problem for heterogeneous data warehouses.

We have developed a set of DLT formulae using virtual arguments to handle virtual
intermediate schema constructs and virtual lineage data. Based on these formulae, our
algorithms perform data lineage tracing along a general schema transformation path-
way, in which each add transformation step may create either a virtual or a materialised
schema construct. The algorithms described in this paper have been implemented and
tested over simple relational data source and integrated schemas. We are currently de-
ploying them as part of a broader bioinformatics data warehousing project (BIOMAP).

One of the advantages of AutoMed is that its schema transformation pathways can
be readily evolved as the data warehouse evolves [12]. In this paper we have shown how
to perform data lineage tracing along such evolvable pathways.

Although this paper has used IQL as the query language in which transformations
are specified, our algorithms are not limited to one specific data model or query lan-
guage, and could be applied to other query languages involving common algebraic
operations on collections such as selection, projection, join, aggregation, union and
difference.

Finally, since our algorithms consider in turn each transformation step in a transfor-
mation pathway in order to evaluate lineage data in a stepwise fashion, they are useful
not only in data warehousing environments, but also in any data transformation and
integration framework based on sequences of primitive schema transformations. For
example, [19, 20] present an approach for integrating heterogeneous XML documents
using the AutoMed toolkit. A schema is automatically extracted for each XML docu-
ment and transformation pathways are applied to these schemas. Reference [16] also
discusses how AutoMed can be applied in peer-to-peer data integration settings. Thus,
the DLT approach we have discussed in this paper is readily applicable in peer-to-peer
and semi-structured data integration environments.
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Abstract. Today XML has become the most important data exchange
technique on the World Wide Web. As a consequence the interest in
concurrent XML processing has greatly increased.
In this paper we propose a new XPath-based DataGuide Locking pro-
tocol (XDGL), which generalizes on and extends the hierarchical data
locking protocol. This new protocol takes into account the semantics
and nature of XML. It can be easily implemented on top of traditional
databases as well as in a native XML DBMS.

1 Introduction

The eXtensible Markup Language (XML) [1] has emerged as the de facto stan-
dard for storing and exchanging information in the Internet Age. As the amount
of XML data on the World Wide Web is constantly increasing, concurrent access
to XML documents becomes a more and more important issue. Usually we are
interested in the case when several transactions are working with the same doc-
ument concurrently. Then we need to check that these transactions have been
serialized properly.

Serializability [2] requires that concurrent transactions produce the same
result that we would get if they were executed in a certain sequential order.
Different protocols have been proposed to ensure serializability.

A number of concurrency control protocols has been proposed. The most
popular class is locking-based protocols. Locking-based protocols use various
types of locks to determine whether a transaction can proceed. Shared locks and
exclusive locks are two basic types of locks. A transaction can proceed if the lock
on the desired object is compatible with locks held by other transactions on the
same object.

Locking mechanisms such as predicate locking [3], hierarchical locking [4] and
tree-based locking [5] have been introduced to suit special needs and increase
the level of concurrency provided by multi-user data management systems.
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Two-phase locking protocol (2PL) [6] is the most widely used one. 2PL uses
locks to prevent conflicting transactions from modifying the shared objects. To
ensure serializability, transaction should obtain locks only in the growing phase
and release locks only in the shrinking phase.

There has been proposed a number of concurrency control methods, which
are tailored to XML data. Most of them provide node-level locking [7], [8], [9]. On
the one hand, these methods provide a high degree of concurrency. On the other
hand, their problem is that for large documents the lock manager should manage
a large number of locks. It leads to significant increase of the lock manager ta-
ble, which results in the system performance loss. To alleviate this problem, lock
escalation procedure should be employed. The procedure handles the conversion
of many fine-granularity locks into fewer coarse-granularity locks. Unfortunately,
this method usually leads to a major concurrency decrease. Another problem is
that these approaches rely on the assumption that the whole document is avail-
able. Unfortunately, for most XML applications this is not the case. Our protocol
does not impose this restriction and requires only summary of the DataGuide
structure [10] instead.

Obviously it is possible to use these well-known results to provide concurrency
control for XML data. However, it has been shown [11] that the above-mentioned
conventional concurrency control methods do not suite XML data well. These
methods do not provide high enough degree of concurrency for XML. There is
a need for synchronization method utilizing the semantics and nature of XML
data.

We present XPath-based DataGuide Locking protocol (XDGL), which guar-
antees serializability and provides high degree of concurrency within the same
XML document. In the proposed method we use a subset of well-known XPath
[12] language to access the document nodes and insert/delete operators to modify
document. In our locking method we employ the DataGuide structure for lock-
ing purposes rather than document itself. We use combination of hierarchical
and node locks on DataGuide. Besides, we utilize the knowledge of XML docu-
ment prescriptive schema (e.g. given as a Document Type Definition (DTD) [1]
specification). We also take into account the semantics of update operations
to increase concurrency. Our locking method enforces strict serializability and
prevents appearance of phantoms [3].

The rest of the paper is organized as follows. In Section 2 we introduce the
XML query and update languages, which are of interest in this paper. Section
3 is devoted to proposed locking protocol. It contains a number of examples,
which show the benefits of our method. In Section 4 we give a brief overview of
related work. Particularly, we discuss similar locking methods. Section 5 contains
a summary and a discussion of future research.

2 Preliminary Notes

This section gives an overview of query and update languages. We also describe
the DataGuide structure employed for locking purposes. To illustrate these no-
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tions we will use the example document D containing information about various
people and their families. It is shown in Fig. 1(a). The document conforms to
the DTD depicted in Fig. 1(b).

Fig. 1. (a) an XML document D, (b) its DTD

2.1 Query Language

The user can access the documents through XPath queries. Location path is the
most important construction in the XPath language. A location path consists of
several location steps, separated by ‘/’. There is a set of nodes (called context
nodes) from which each location step starts with. A location step then generates
its result, which is a set of nodes. This set provides context nodes for the next
location step in the path. The result of the location path is the result of the last
location step.

Each location step is represented by the following construction: axis::node-
test[predicate], where axis specifies the step direction (e. g. child, parent, an-
cestor, descendant, attribute), node-test specifies the selected node type and
predicate refines the selected nodes.

In this paper we will consider only restricted version of location steps, which
do not contain predicates. There is also an abbreviated syntax which is widely
used: instead of explicit axis specification parent, descendant and attribute axises
could be referred as ‘..’, ‘//’, ‘@’ abbreviations respectively. In all our examples
we will follow an abbreviated syntax of location paths.

Let us consider the document shown in Fig. 1(a), the location path /doc/
person starts from the root / and consists of two location steps. The context
node of the first step is the root and context node of the second step is the doc
node. The result of this location path is person elements.
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2.2 Update Language

To change the document one should use update operators. We define two kinds
of update operators: insert and delete operators. It is obvious, that arbitrary
update operation could be expressed as a combination of inserts and deletes.

– insert-operator: INSERT constructor (INTO | BEFORE | AFTER) path-
expr

– delete-operator: DELETE path-expr

Here constructor is an element or attribute constructor. We specify an ele-
ment constructor as element {elem-name} {content} (or as <elem-name>content
</elem-name>); meaning of the elem-name and content is straightforward.
There are complex element constructors. In such constructor content itself is
the nested element constructor. In a simple case content could be just a text.

One can specify the attribute constructor as attribute {name} {text}. Here
name and text specifies the name and the value of the attribute.

We introduce three types of insert operators: insert-into, insert-before and
insert-after. These operators insert new node defined by constructor as the last
child, previous sibling and next sibling for each node selected by path-expr re-
spectively. If constructor specifies an attribute constructor, then we could only
use insert-into operator that adds new attribute to each node selected by path-
expr. It also means that each of the selected nodes should be of element type.

Delete operator removes subtrees of all nodes specified by path-expr from the
document. That is to say, our delete operator uses the deep deletion semantics.

Now we will study a simple example to make the above clear. Consider
the document shown in Fig. 1(a). The following update statement adds new
hobby element to each person located inside the doc element: INSERT ele-
ment{hobby}{‘skating’} INTO /doc/person.

2.3 DataGuide

DataGuide is a concise synopsis of the XML document. DataGuide is a tree and
it is defined as follows: every path of the document has exactly one path in the
DataGuide, and every path in the DataGuide is the path in the document. Fig. 2
depicts DataGuide of the document D shown in Fig. 1(a).

3 Locking Method

In order to define a locking method we need to define the locks and locking rules
for transactions to follow. Every transaction should obtain a certain number of
locks to access an object. If transactions need to lock the same objects, they
should check whether the locks are compatible. Our protocol requires transac-
tion to follow strict two-phase locking protocol (S2PL). According to S2PL a
transaction, acquired a lock, keeps it until the end.
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Fig. 2. DataGuide of the document D

We introduce granular locking protocol on DataGuide. The protocol defines
intentional locks in addition to shared and exclusive locks. To set a shared lock
on an object a transaction T must firstly set an intention locks on its ancestors.
But there are a number of use cases when the locking of the entire subtree, as the
common granular locking protocol does, is not necessary. Use Case 1 is intended
to explain it.

Example 1 (Use Case 1). Let us suppose that transaction T 1 has issued the
XPath query /doc/person/name. It should be possible for transaction T 2 to
insert empty element <person/> as a child of doc element. According to the
granular locking protocol T 1 must lock name subtree while T 2 must lock the
entire person subtree including name element. Thus, T 1 and T 2 cannot be exe-
cuted concurrently.

In fact, transactions T 1 and T 2 do not conflict. They would conflict if T 2
inserted <person><name>Tanya</name></person> element inside doc ele-
ment.

To avoid locking of the entire subtree, we use locks on the DataGuide’s nodes.
This way we can provide high degree of concurrency and, in particular solve the
above problem. Besides, we introduce some special shared locks on DataGuide’s
nodes, utilized by insert operations.

To remedy the phantom problem we introduce special logical locks. They
allow to lock name under the DataGuide’s node. These locks are useful for such
queries as //addr. According to the DTD of document D, person element is
defined recursively. Therefore, D ’s DataGuide could contain random number of
the addr nodes. A logical lock on the addr name on the D ’s DataGuide denies
other transactions to insert any element with the name addr.

In next subsection we describe in detail our locking method and give a couple
of examples to emphasize the benefits of our protocol.
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3.1 The XDGL Protocol

Logical locks add a great deal of complexity to the XDGL protocol. Hence, at
first we will describe a simplified variant of XDGL without logical locks. However,
we will note that this variant does not ensure serializability.

Simplified XDGL Method. Concurrent operations may result in inconsistent
data unless controlled properly. To avoid this kind of problems we must serialize
concurrent operations. We employ locks as a mean of synchronization. Let us
define the kinds of locks we need.

– SI, SA and SB locks. These special shared locks are used by insert operations.
They provide high degree of concurrency that could be achieved because of
the insert operator semantics. As we have already mentioned, there are three
types of insert operators: insert-into, insert-after and insert-before. Insert-
into operator adds a child or an attribute to a node. Insert-after operator
creates a sibling for a node. Thus, we add a node to the parent next to our
node in the document order [12]. Insert-before operator defined in a similar
way. SI (shared insert), SA (shared after) and SB (shared before) locks block
concurrent insert operations of the same type. These locks also protect the
very node. For instance, a transaction cannot delete this node while such a
lock is held.

– X lock. The lock sets exclusive mode on a DataGuide node. For instance,
this lock is obtained for a newly created node.

– ST lock. The lock sets shared mode on a DataGuide’s subtree. XPath queries
require this kind of locks. Due to the semantics of XPath the results of the
location path are the subtrees selected by the last location step. It implies
the request of the ST (shared tree) lock for subtrees retrieved by location
path.

– XT lock. The lock sets exclusive mode on a DataGuide’s subtree. We use
it for delete operations. The delete operator drops the subtrees defined by
location path. It implies the request of the XT (exclusive tree) locks for
these subtrees.

– IS lock. According to the granular locking protocol we have to obtain these
locks on each ancestor of the node which is to be locked in a shared mode.

– IX lock. According to the granular locking protocol we have to obtain these
locks on each ancestor of the node which is to be locked in an exclusive mode.

Fig. 3 shows compatibility matrix for the lock modes defined above. A com-
patibility matrix indicates whether a lock of mode M1 may be granted to a
transaction, while a lock of mode M2 is presently held by another transaction.

Note, that IX and X locks are compatible since IX lock on a node only
implies the intention to lock the descendants of the node. But it does not im-
ply the lock on the node itself. SI (SA, SB) lock is not compatible with SI
(SA, SB) lock, which prevents concurrent insert-into (insert-after, insert-before)
operations upon the same node.
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Fig. 3. Lock compatibility matrix

Now we will show that both transactions in the Use Case 1 can proceed with
proposed locking method. According to XDGL, transaction T 1 must obtain IS
lock on nodes n1, n2 and ST lock on node n4. At the same time T 2 must obtain
IX lock on n1 and X lock on n2. As all locks are compatible transactions T 1
and T 2 could be executed concurrently. This is illustrated in Fig. 4(a).

Fig. 4. (a) XDGL for Use Case 1, (b) incompatibility of insert operations, (c) logical
locks and XDGL

To make the locking mechanism more clear we will consider several examples.

Example 2 (conflict of two insert operations). Let us suppose that transaction
T 1 inserts new child element: INSERT <child/> INTO /doc/person, while trans-
action T 2 inserts new hobby element: INSERT <hobby/> INTO /doc/person.
Fig. 4(b) shows that transactions T 1 and T 2 cannot run concurrently since SI
lock is not compatible with itself.

Logical Locks and XDGL. In XPath language we can get nodes at any
level of the document using descendant axis. Thus, we should prevent phantom
appearance in such queries.
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Inserts performed by concurrent transactions are the only source of phan-
toms. One way to prevent phantoms is to request locks of the coarser granules.
It is obvious that this would lead to significant decrease in concurrency.

For this reason, we introduce logical locks. Logical lock (L, node-name) is
requested for the name of the DataGuide’s node.

For instance, the query /doc/person//addr requires logical lock (L, addr) on
node n2, as well as delete statement DELETE //hobby requires logical lock (L,
hobby) on the DataGuide’s root.

In turn, a transaction, which wants to insert new node in the document should
obtain (IN, node-name) lock on the all ancestors of the node to be inserted. IN is
short for Insert New Node. (IN, node-name1) lock is compatible with (L, node-
name2) lock if and only if node-name1 differs from node-name2. Note, that L
and IN locks do not conflict with locks introduced in the previous section.

Example 3 (phantom prevention). Let us suppose that transaction T 1 retrieves
all age attributes found at any level inside person elements which can be found
themselves inside doc. In XPath such query looks like this: /doc/person//@age.
At the same time transaction T 2 inserts new age attribute into the person el-
ement by the following statement: INSERT attribute{age}{‘54’} INTO /doc/
person/child/person.

It is easy to see that the second transaction might add a phantom node for
the first one. However, our locking rules prevent this situation. This is shown in
the Fig. 4(c): (L, @age) lock is not compatible with (IN, @age) lock. Thus, the
insertion of the age attribute is denied.

3.2 Unordered XML Documents

We can adopt our locking method to unordered XML documents, when the order
between nodes in the document is not important. In this case SI, SA and SB locks
are not necessary, but instead of them conventional S lock is needed. It locks
the DataGuide node in the shared mode. By definition S lock is compatible with
itself, which allows to improve concurrency. For instance, two insert operations
which add elements with different names into the same element do not conflict.

4 Related Work

There were proposed several locking schemes for synchronizing concurrent XML
operations. Here is a brief overview of these methods.

Grabs et al. [13] proposed a DGLOCK protocol, which is a combination of
well-known granular and predicate locking on the DataGuide. This work has
much in common with our one. But DGLOCK has several disadvantages: (1)
as a consequence of granular locking we have a conflict in the Use Case 1, (2)
DGLOCK does not guarantee serializability and has no phantom prevention
mechanism, (3) the descendant axis, which is widely used in applications, is not
supported.
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In [7], the synchronization of concurrent transactions is considered in the
context of DOM API. The authors present three types of locks: node locks,
navigational locks and logical locks. Node and navigational locks are acquired
for context nodes and virtual navigation edges respectively. In turn, logical locks
are introduced to prevent phantoms. Authors offer variety options to enhance
transaction concurrency. But synchronization of other APIs (e.g. XPath) is part
of the future work.

There are a number of isolation protocols for the DOM API proposed in the
work [8]. Unfortunately, these locking protocols were developed for DOM API
only, and it is not clear whether they will also perform well if most access is done
by XPath expressions.

Dekeyser et al. [11] proposed the fine-grained (node-level) XPath-based lock-
ing protocol, which ensures serializability. But this method does not use the
DataGuide. Instead all the locks are obtained on the document itself. Disadvan-
tages of this approach have been already noted in this paper.

5 Conclusions and Further Work

Efficient processing of concurrent operations on XML data is an important prob-
lem. We have presented the XDGL, a locking method for concurrent processing
of XML data. The XDGL protocol is based on the previous works upon locking
of hierarchical data. It takes into account the semantics and nature of XML
query and update operations. XDGL is a generic method and its application is
not limited to native XML databases. It could be implemented on top of any
existing system. Besides, the growth of XML document usually results in rela-
tively small increase of the locking structures with our method. This happens,
since the size of the DataGuide structure grows slowly.

We plan to extend XDGL with predicates. Then it would be possible to sup-
port the full version of XPath language and improve the degree of concurrency.
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Abstract. Presently, the area of updating XML is immature since
XQuery has not provided update features. Thus this area has not been
investigated as fully as it should have been. Moreover existing researches
focus on updating native XML database so that everything must be cre-
ated from scratch. Furthermore, an XML document is often treated as
a database by keeping all data in one document, leading invariably to
data redundancy. Such redundancy in XML documents can lead to data
inconsistency and low performance when updates are performed. There-
fore, we exploit the power of traditional database systems, which are
fully developed to update XML documents. We present a mechanism to
link non-redundant data kept in multiple XML documents. The data is
held in an object-relational database (ORDB) and an update language
is proposed, an extension to XQuery, which is translated into SQL for
updating XML data stored in an ORDB. Finally, we present a technique
to propagate the changes in an ORDB to XML documents.

1 Introduction

The emergence of XML as an effective standard for representation of (semi-)
structured data on the Web has motivated a host of researches in the area re-
lated to XML such as storing [6], publishing [5], querying [1], and updating [9]
XML documents. In the area of querying XML documents, several query lan-
guages, such as Lorel, XQL, and XQuery have been proposed and implemented
while in the area of updating XML documents, several researchers pay attention
to designing update languages such as XUpdate [11], SiXDML [8], and XML Up-
date Extension [9] of which only a few have been implemented such as XUpdate.
However, these update languages can perform only simple updates. For exam-
ple, they may update an XML document without checking constraints and they
cannot perform joins between documents in update commands. This indicates
that at present the research in this area is underdeveloped.

Our research concentrates on developing a methodology to update linked
XML documents. Our motivation comes from three reasons as follows. Firstly,
research in the area of updating XML is not fully developed since XQuery,
a standard from W3C, has not provided update features. However, there is a
suggestion from W3C [3] for the imminent arrival of an update version in XQuery.
Secondly, when updates are made directly on XML documents in the form of
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native XML database, many other tasks need to be performed such as preserving
constraints. However, developing the mechanism for handling this work from
the current starting point may take a long time. Thirdly, an XML document
is usually treated as a database keeping all data in one document; thus data
redundancy can occur. This redundancy may lead to data inconsistency and poor
performance when updates are performed. To reduce data redundancy, data is
sometimes kept separately in several documents. However, presently, this means
that joins between XML documents in update commands cannot be performed.

In our methodology, we update XML documents via ORDB and let the
database engine handle the preservation of constraints; thus structure and con-
straints of XML are mapped to an ORDB. To solve the problem of data redun-
dancy, data is kept in several separated documents. These documents will be
linked together by a mechanism called ‘rlink’. This mechanism is then mapped
to an ORDB. We propose an XML update language, which is an extension to
XQuery. The proposed update language is translated into SQL to update XML
data stored in an ORDB. Finally, the change in an ORDB is propagated to XML
documents.

For the rest of the paper, we investigate issues relating to the design of
our methodology. Section 2 describes how XML documents are mapped onto
an ORDB. Section 3 presents our XML update language and its translation
into SQL. Section 4 describes how changes are propagated into original XML
documents. Preliminary conclusions and future work are discussed in section 5.

2 Mapping XML Documents

To update XML documents via traditional databases, XML must be mapped
onto a database. We map XML onto an ORDB by using a shredding approach
since hierarchical structures as well as constraints of XML can be represented
in an ORDB. Presently, according to published work [6, 7], full mapping of
XML structures and constraints onto ORDBs cannot be fully achieved due to
limited constraints-handling capabilities in existing object-relational database
management systems (ORDBMSs). Therefore, we propose new mapping rules
and apply some existing rules [6] that are practicable using available ORDB
technologies.

We use three features of ORDBs in our mapping rules: abstract data type,
object table and nested table. Some of our rules are as follows. Firstly, elements
having only one complex child-element are mapped to object tables, and their
complex child-elements are mapped to abstract data type fields. Secondly, com-
plex elements which have * or + occurrence and have siblings are mapped to
nested tables if they comply with the following conditions: (a) all of their chil-
dren are simple elements and all attributes have no type IDREF(s), (b) they
have no references to other elements and no references from other elements to
them, and (c) they have no recursive structure. Thirdly, complex elements which
have ? or 1 occurrence, have a sibling and have children all of which are simple
elements are mapped to abstract data type fields. Fourthly, complex elements
which do not correspond to the above rules are mapped to object tables. Fifthly,
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for parent-child relationship and recursive structure with ? or 1 occurrence, the
primary key of the table of parent-element is mapped to a table of child-element.
Finally, for recursive structure with + or * occurrence, a separate table is created
to store the primary keys of tables of a parent-element and a child-element. For
attributes and simple elements, rules are similar to the work of [6].

For associating the relationship between elements from different XML docu-
ments, an rlink mechanism is used to provide information to identify which doc-
uments and/or elements are linked to others. Although this may be extended
to XLink the main purposes of XLink and rlink are different. Mapping rlink
mechanism to ORDB is the same as mapping IDREF(s). If an element referred
by IDREF or occurrence of elements containing rlink is 1 or ?, the primary key
of the table of a referred element is mapped to a table of a referring element.
If an element is referred by IDREFs or occurrence of elements containing rlink is
+ or *, a separate table is created to keep primary keys of tables of a referring
element and a referred element.

Most of XML constraints can be mapped onto ORDB constraints; however,
a cardinality constraint is unavailable in any (O)RDBMSs. Therefore, we add a
method for preserving this constraint when updates are performed.

3 XML Update Language and Its Translation

Our XML update language is adapted from the update language proposed, but
not yet implemented, by Tatarinov et al. [9], and is based on the syntax of
XQuery [10]. The syntax of our language is shown in Fig. 1.

When compared with existing XML query languages, XQuery is the most
powerful, providing many features [4, 10]. Moreover, since XQuery is a func-
tional language and SQL is a declarative language, this translation cannot be
performed in a straightforward manner. In our research, five important con-
structs of the update language are inherited from XQuery: FLW(R—I—D), con-
ditional expression, quantifier, aggregate functions and user-defined functions.
These constructs are translated into SQL using four techniques: update/delete
join commands, rewriting rules, graph mapping and optimisation. At here, only
the first three techniques are presented while optimisation is presented in [2].

Update/delete join commands: In the SQL standard, joins in update/delete
commands cannot be performed; however, translating XML update commands
can produce a join of several tables. Thus we will translate XML update com-
mands into update/delete join commands and then rewrite these commands in
SQL. Syntax of the commands is shown in Fig. 2.

Rewriting rules: There are six categories of rewriting rules: For-Let-Where-
Replace-Insert-Delete (FLWRID) expression, aggregate function, quantifier, con-
ditional expression, (non-recursive) user-defined function and SQL rewriting
rules. The first five categories are classified according to features of the update
language. These rules will rewrite update commands as SQL functions. Such
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(ForClause | LetClause)+

WhereUpdateClause|IfUpdateClause

where each clause is:

ForClause ::= For $var in XPathExp(,$var in XPathExp)*
LetClause ::= Let $var := XPathExp(,$var := XPathExp)*
WhereUpdateClause ::= WhereClause? UpdateClause
WhereClause ::= Where Condition
UpdateClause ::= DeleteClause|ReplaceClause|InsertClause
DeleteClause ::= Delete node WhereClause? (,Delete node WhereClause?)*
ReplaceClause ::= Replace node with content WhereClause?

(, Replace node with content WhereClause?)*
InsertClause ::= Insert content Into node (Before|After condition basedon XP ath)?

(,Insert content Into node (Before|After condition basedon XP ath)?)*
IfUpdateClause ::= If Condition Then UpdateClause

(ElseIf Condition Then UpdateClause)*
(Else UpdateClause)?

Fig. 1. Syntax of XML Update Language

Syntax of joins in update command Syntax of joins in delete command

Update table whose fields will be updated Delete table whose data will be deleted
From all related tables From all related tables
Set field1 =value1, field2 = value2, Where Condition;
Where Condition;

Fig. 2. Syntax for Update/Delete Join Commands

functions are sometimes conceptual, i.e., the function serves a purpose not cur-
rently existing in SQL. The last category is SQL rewriting rules, which rewrite
update/delete join commands to SQL commands.

In translating XML update commands by using the rewriting rules, all clauses
of the commands must be rewritten as SQL functions, which are used to group
update clauses and their conditions together since one update command can
consist of several update clauses, and each update clause can have its own con-
ditions. These update clauses are grouped together using funcNo, a parameter
of every SQL function. A funcNo of 0 for ForClause, LetClause, and WhereClause
of the update command means that these clauses will be shared clauses of an
UpdateClause. Each update clause will have its own funcNo, being a sequential
number starting from 1. The update clause and its own condition(s) will have
the same funcNo. Some of the SQL functions used are shown in Fig. 3.

Some functions have the parameter value|:funcNo (literal or variable) since
the value in the predicate or in an insert or update command is sometimes not a

1. select(node, funcNo) 2. insert (node, value | :funcNo, funcNo)

3. delete(node, funcNo) 4. update(node, value | :funcNo, funcNo)

5. where | logical-operator (node, comparison-operator, value|:funcNo, funcNo)

Fig. 3. Examples of some SQL Functions
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constant value but may come from selecting a value in other nodes. Hence in this
case, :funcNo has the same value as the funcNo of select() function. Details
of rewriting rules including additional rules for translating recursive functions
into SQL can be found in [2].

Graph mapping: Graph mapping is used to determine the type of a node and
hence which SQL functions can be performed on the structure of the ORDB,
obtained as a result of mapping XML documents.

The process of graph mapping starts from creating a graph whose nodes cor-
respond to nodes in SQL functions. The graph is then mapped into the database
schema graph (a graph representing database schema) to identify which node is
table, nested table, abstract data type field or simple field. Foreign keys for joins
between tables are added to the graph. The SQL functions are then mapped to
the graph. Then the graph may be split into several sub-graphs. The number
of sub-graphs corresponds to the number of update operations performed on
different tables. Finally, the (sub-)graphs are optimised and SQL commands or
update/delete join commands are generated from the (sub-)graphs.

4 Propagating the Change in ORDB to XML Documents

The purpose of propagating the change in ORDB to XML documents is to
reflect the change of data. Usually updating affects only some small parts of the
documents; thus propagating the change is performed on only the affected parts.
We use values of primary keys (PKs) or RowIDs of updated data in ORDB to
indicate which elements should be updated. The PKs in ORDB originate from
ID attributes. For elements which do not provide ID attributes, the values of
RowIDs, which are automatically generated by the database system, are recorded
to appropriately typed elements at the stage of populating data into the tables.
Hence the values of these RowIDs can be indicated by the values of the RowIDs
kept in ORDB.

When data in the ORDB is updated, the table name, PKs and values of
PKs of the updated data will be returned and then the paths in the XML
update command are converted to XPath expressions. The conditions in XPath
expressions are based on the returned objects to indicate the positions in XML
documents which will be updated. Since XPath has no capability for updating,
we propose functions which serve as operators for updating XML documents.

5 Preliminary Conclusion and Future Work

As stated earlier, research in the area of updating XML is not fully developed.
Thus we propose a potential way for updating XML via traditional databases.
However, the mapping of XML onto simple RDB structures loses structural clar-
ity, while object-oriented databases (OODBs) have limitations in representing
constraints. Hence we map from XML to an ORDB. To eliminate redundancy,
non-redundant data are kept in multiple documents and are linked by an rlink
mechanism, mapping to an ORDB. We proposed an XML update language and
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techniques to translate XML update language into SQL. Finally, the change in
ORDB is propagated to XML documents. A major benefit of updating XML
through (O)RDB is that the task of preserving constraints can be pushed to the
database engine.

In further work, we will first investigate how to handle the order of elements
in XML documents when elements are inserted or deleted. Then we implement
the translation of the update language and propagate the change in an ORDB to
XML documents. Finally, we will conduct a performance comparison of updating
one XML document containing redundant data via an ORDB in the manner of
native XML database with that of updating linked XML documents containing
non-redundant data via an ORDB. For the future work, we will propose mapping
XML to an ORDB based upon XML Schema and focus on updating the structure
of XML via ORDB and handling concurrency aspects such as lock levels.
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Abstract. We present a publish/subscribe framework for integrating
data streams published by distributed producers. We introduce the idea
of republishers which merge a set of data streams, either from producers
or other republishers. The resulting hierarchy of producers and repub-
lishers can then be used to answer consumer queries over the streams.
We discuss how to compute query plans to create such a hierarchy and
the maintenance of these plans when the set of streams changes.

1 Introduction

Often streams of data are generated at many distributed sources, and are re-
quired by users who are also distributed, e.g. pollution or traffic monitoring.
We propose to understand the management of these streams as a data integra-
tion task [5]. In such an approach, producers would publish a data stream while
consumers would subscribe for data by posing a query over a global schema.
This idea has been partially implemented in the R-GMA Grid information and
monitoring system [2]. Another approach, being followed by the StreamGlobe
project [6], is to use a P2P environment. However, it is unclear as to whether
any guarantees are provided for the correctness of the answer streams.

In order to allow our data integration system to scale to a large number of
data sources, and subscribers, we have introduced the concept of a republisher.
These are components which merge a set of data streams, either from producers
or other republishers, and make the merged stream available. This allows for
more efficient query answering.

Queries over data streams are long lived, and during their lifetime the set of
data sources can change. As such, the plans used to answer these queries become
out-of-date because they rely on a producer or republisher that no longer exists,
or do not cover some new data stream. We present mechanisms by which query
plans can be updated whenever the set of data sources changes.

The rest of this paper is organised as follows. In Section 2 we describe the
mechanisms previously developed for publishing and querying data streams [1].
Then we discuss the new techniques for planning republisher queries in Section 3
and for plan maintenance in Section 4. An extended version of this paper [4] gives
further details of the planning and maintenance techniques.
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2 Publishing and Querying Relational Data Streams

We assume that there is a global relational schema against which consumers
and republishers pose their queries. The attributes of a relation in the global
schema are split into three parts: key attributes, measurement attributes, and a
timestamp attribute. As an example, taken from a grid monitoring application,
consider the relation ntp (“network throughput”) with the schema

ntp(from, to, tool, psize, latency, timestamp),

which records the time it took (according to some particular tool) to transport
packets of a specific size from one node to another. The underlined attributes
make up the primary key of ntp, while latency is the measurement attribute.

Each specific set of values for the key attributes of a relation identifies a chan-
nel through which data can flow. For example, for the ntp relation, the subtuple
(’hw’, ’ral’, ’ping’, 512) identifies a channel through which measurements
made with the ping tool for packets of 512bytes originating at Heriot-Watt
University (hw) and going to Rutherford Appleton Laboratories (ral) can flow.

A data stream can be seen as a sequence of tuples. We have identified var-
ious properties that a stream may have: duplicate freeness, i.e. a tuple only
appears once; disjointness, i.e. the same tuple cannot appear in two streams;
and weak order, i.e. for each channel tuples appear in chronological order. We
have adopted the notion of weak order as our streams will be published by dis-
tributed sources, which makes it difficult to guarantee chronological order when
merging two streams.

Producers describe the streams that they publish by a query on the global
schema, called a descriptive view. We limit these views to selection queries on
a single relation in the global schema where the selection condition may only
refer to the key attributes of the relation, i.e. a producer publishes a set of
channels. Consider that there is a tool measuring the time taken for UDP mes-
sages to be sent from hw to ral. Using the example ntp relation, we would
register the producer S1: σfrom=’hw’∧tool=’udpmon’(ntp). Later on, we will also con-
sider the following producers with their views S2: σfrom=’hw’∧tool=’ping’(ntp), S3:
σfrom=’ral’∧tool=’ping’(ntp), and S4: σfrom=’ral’∧tool=’udpmon’(ntp). The set of four
producers together record the latency in both directions between hw and ral,
using both the PING and UDPmon tools.

Republishers also publish a data stream. However, this stream is generated
by posing a continuous query over the global schema. It is this query which de-
scribes the contents of the republisher’s published stream. For our example on
the ntp relation, we will consider three republishers. One for all of the measure-
ments originating at hw, which would register the query R1: σfrom=’hw’(ntp), and
likewise one for ral with the query R2: σfrom=’ral’(ntp). We will also consider
a republisher that republishes the entire stream for ntp, which would register
the query R3: σtrue(ntp). In Section 3 we will consider how to compute query
plans to generate these answer streams. We refer to producers and republishers
collectively as publishers.
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A continuous query is one that returns a stream of answers. We limit these
queries to arbitrary selection queries over the global schema. However, the global
schema contains no data, so we have developed a registry [1, 2] whose rôle it is
to act as a “matchmaker” (cf. [7]) between the queries and the descriptive views
of the publishers. In doing so, the registry computes a query plan from which
answer streams can be generated that contain the tuples to answer the query,
based on the current configuration of publishers. For our example scenario, we
will consider a consumer interested in latencies for messages starting at hw with
a packet size of at least 1024bytes. The corresponding query over the global
schema is q = σfrom=’hw’∧psize≥1024(ntp).

We will now illustrate the query planning techniques for consumer queries
which were developed in [1]. These techniques compute query plans which guar-
antee to generate answer streams that are sound and complete w.r.t. the query,
duplicate free, and weakly ordered.

The first step is to identify which publishers are relevant for the query. A
publisher is relevant if (i) it can provide some channels which the query asks for,
and (ii) all of the measurements for a channel are provided by that publisher.
The second criterion ensures that all answer streams generated by the plan are
weakly ordered. The set of relevant publishers for q is {S1, S2, R1, R3 }.

Next, we compare the publishers according to what they can provide to
the query. A publisher which can only provide a strict subset of what another
republisher can provide is dropped so that we are left with the maximal relevant
publishers. We do not allow a producer to override another publisher as there
is no guarantee that its answer stream is complete w.r.t. its descriptive view.
However, republishers are complete by construction. For q, this gives us the set
{R1, R3 } since the view of the producers are logically weaker than that of these
republishers. However, R1 and R3 are equivalent in what they can provide the
query.

Finally, to provide some built in robustness to our query plans, we group the
maximal relevant publishers so that we only need to choose one of a group of
equivalent, w.r.t. the query, republishers. We represent the query plan as a pair.
For q this is

({
{R1, R4 }

}
, ∅

)
, where the first component consists of groups of

equivalent republishers and the second would consist of maximal producers. Full
details of how to compute and execute these query plans can be found in [1].

3 Republishing Data Streams

Republishers pose a query over the global schema and publish the resulting
answer stream. As such, they merge together small “trickles” of data into more
useful data streams. These streams can then be used by other global queries to
make query answering more efficient, as only one publisher needs to be contacted.

A straightforward approach would be to construct query plans for republish-
ers using the techniques developed for consumer queries. However, this can lead
to cycles of republishers in the hierarchy that are disconnected from the produc-
ers. This is due to the consumer planning techniques favouring the most general
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R3: Data Flow

Potential answer streampsize >= 1024
from = ’hw’

from = ’hw’
R1:

from = ’hw’ /\
tool = ’udpmon’

S1:
from = ’hw’ /\
tool = ’ping’

S2:

from = ’ral’
R2:

from = ’ral’ /\
tool = ’ping’

S3:
from = ’ral’ /\
tool = ’UDPmon’

S4:

?

?

Fig. 1. Publisher hierarchy for a publisher configuration consisting of S1, S2, S3, S4,
R1, R2, and R3

data sources. These disconnected cycles of republishers are undesirable since a
consumer that relies on such a republisher contained in a cycle will retrieve no
answers, and thus would no longer be complete w.r.t. their query.

In [4], we argue that the following four requirements are essential for any
planning mechanism for republishers: (i) Correctness i.e. the plan for each repub-
lisher should be sound and complete for the defining query as well as duplicate
free and weakly ordered, (ii) Cycle Freeness i.e. the hierarchy should not contain
any cycles, (iii) Uniqueness of the Hierarchy i.e. for any publisher configuration
it should only be possible to derive one hierarchy, and (iv) Local Query Planning
i.e. a republisher requires no information about the plans of other republishers.

These four properties can be maintained by suitably adjusting the definition
of relevance. For a republisher R to be relevant for the query of another repub-
lisher R′ we require that R supplies a strict subset of the channels that R′ wants.
By applying this new definition of relevance for republisher queries, to the ex-
ample publisher configuration introduced in Section 2, results in the hierarchy
illustrated in Fig. 1. The solid lines in the figure represent data flowing from
the producers through the hierarchy. The dashed lines represent the choice the
consumer has in retrieving its answer stream, i.e. either from R1 or R3.

4 Plan Maintenance

A query over a data stream is long lived, it continues to return tuples until
explicitly ended. However, in a publish/subscribe system, components can be
added or removed without notice. Thus, the query plans of both consumers and
republishers must be maintained to reflect any changes in the configuration of
publishers. We shall use the ongoing example to illustrate some of the points
arising. Full details of the query plan maintenance techniques can be found in
[4].

One possibility would be to compute the new query plan from scratch. How-
ever, it is likely to be more efficient to (i) identify when at all a query plan is
affected by a change, and (ii) to amend the query plan, whenever this is possible,
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R3:

tool = ’ping’
R4:

psize >= 1024
from = ’hw’

from = ’hw’
R1:

from = ’hw’ /\
tool = ’udpmon’

S1:
from = ’hw’ /\
tool = ’ping’

S2:

from = ’ral’
R2:

from = ’ral’ /\
tool = ’ping’

S3:
from = ’ral’ /\
tool = ’UDPmon’

S4:

Data Flow

Potential answer stream

?

?

Fig. 2. Publisher hierarchy after the republisher R4 has been added

based on the information contained in the old query plan and the change to the
configuration.

We first note that we only need to consider query plans for which the pub-
lisher, which is being added or removed, is maximal relevant. We also note that
the case of a producer being added, or removed, is straightforward. We will now
extend our running example to illustrate the cases of adding, or removing, a
republisher.

We first consider the effects of adding the republisher R4: σtool=’ping’(ntp).
By using the query planning techniques of Section 3, we compute the query plan(
∅, {S2, S3 }

)
. The new republisher R4 is a maximal relevant publisher for R3,

so we must consider if we need to update R3’s query plan. We note that R4 is
not equivalent to either of the other two maximal relevant republishers. Thus,
the query plan for R3 is now

({
{R1 }, {R2 }, {R4 }

}
, ∅

)
.

The publisher hierarchy resulting from these changes is illustrated in Fig. 2.
We notice that the general republisher R3 now has three sources even though
the previous two would still cover all the data available. We have chosen this
approach because (i) it maintains the criteria identified for a publisher hierarchy
(Section 3), (ii) it is computationally difficult to show that R1 and R2 cover the
entire set of channels, and (iii) the state would not be stable, if for example a
new producer for a new site using the ping tool were to be introduced.

As the final part of our example, we will consider dropping republisher R1

from the configuration. This affects the query plans of republisher R3 and the
query q. First we shall consider how to adapt the plan of q. We note that R1

is equivalent to R3 for the query, thus we simply drop R1 from the query plan
leaving us with

({
{R3 }

}
, ∅

)
.

For the republisher R3, there is no republisher equivalent to R1. Therefore,
when R1 is removed the query plan is no longer complete. We must patch the
“hole” left by the removal of R1. This is achieved by adding the producer S1,
giving us the query plan

({
{R2 }, {R4 }

}
,
{

S1

})
. Producer S2 is not added as

the channels provided by S2 are covered by R4.
The resulting hierarchy is shown in Fig. 3. We note that the line from R3 to

the consumer is no longer dashed as there is no equivalent republisher to choose
between now. The consumer must contact R3 to retrieve its answer stream in
the most efficient manner.
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R3:

tool = ’ping’
R4:

psize >= 1024
from = ’hw’ Data Flow

Potential answer stream

from = ’hw’ /\
tool = ’ping’

S2:
from = ’hw’ /\
tool = ’udpmon’

S1:

from = ’ral’
R2:

from = ’ral’ /\
tool = ’ping’

S3:
from = ’ral’ /\
tool = ’UDPmon’

S4:

Fig. 3. Publisher hierarchy after republisher R1 has been removed

5 Conclusions

In this paper we have extended our earlier work on integrating data streams
[1] such that (i) hierarchies of republishers can be formed and are well defined,
and (ii) query plans can be updated whenever there is a change in the set of
available data sources. We have argued that the creation of publisher hierarchies
are desirable as they make query answer more efficient, and feasible for a large
number of publishers and subscribers. This need for a hierarchy of merged data
values has also been identified in the MDS Grid information system [3], however
their hierarchies have to be created and maintained manually. An important
piece of future work is to develop methods to switch between query plans whilst
ensuring that the subscribers receive sound and complete answer streams.
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